Amphibole
OFR54 Bedrock Geologic Map of the Delaware Piedmont
The Piedmont rock units in Delaware, and bedrock geologic map of Schenck et al. (2000) are revised in this report based on new rock geochemistry, geochronometric data, petrography, and recent detailed mapping. Major revisions include:
Common Rocks and Minerals of the Delaware Piedmont
The Red Clay Creek has flowed through the rolling hills of northern Delaware for many thousands of years, cutting a deep valley into the old deformed rocks of the Appalachian Piedmont. The Red Clay valley contains many of the common rocks found throughout the Delaware Piedmont.
Baltimore Gneiss
Granitic gneiss with swirling leucosomes and irregular biotite-rich restite layers is the dominant lithology and constitutes approximately 75 to 80 percent of the exposed rocks. The remaining 20 to 25 percent comprises hornblende-biotite gneiss, amphibolite with or without pyroxene, and pegmatite. Granitic gneiss is composed of quartz, plagioclase, biotite, and microcline. Minor and accessory minerals are garnet, muscovite, magnetite, ilmenite, sphene, apatite, and zircon. The hornblende gneiss contains plagioclase, quartz, hornblende, and biotite with/without orthopyroxene. Accessory minerals are garnet, muscovite, clinozoisite, perthitic orthoclase, iron-titanium oxides, sphene, and apatite. Amphibolites are composed of subequal amounts of hornblende and plagioclase with minor quartz, biotite, clinopyroxene, and orthopyroxene.
Metapyroxenite and metagabbro (undifferentiated)
Light-colored coarse-grained rocks composed of interlocking grains of light colored, fibrous amphiboles, most likely magnesium-rich cummingtonite and/or anthophyllite with possible clinochlor. These rocks become finer grained and darker as hornblende replaces some of the Mg-rich amphiboles. Associated with the metapyroxenites are coarse-grained metamorphosed gabbros composed of hornblende and plagioclase. The metapyroxenites and metagabbros are probably cumulates.
Wissahickon Formation
Interlayered psammitic and pelitic gneiss with amphibolite. Psammitic gneiss is a medium- to fine-grained biotite-plagioclase-quartz gneiss with or without small garnets. Contacts with pelitic gneiss are gradational. Pelitic gneiss is medium- to coarse-grained garnet-sillimanite-biotite-plagioclase-quartz gneiss. Unit has a streaked or flasered appearance owing to the segregation of garnet-sillimanite-biotite stringers that surround lenses of quartz and feldspar. Throughout, layers of fine to medium-grained amphibolite composed of plagioclase and hornblende, several inches to
Windy Hills Gneiss
Thinly interlayered, fine- to medium-grained hornblende-plagioclase amphibolite, biotite gneiss, and felsic gneiss, possibly metavolcanic. Felsic gneisses contain quartz and plagioclase with or without microcline with minor pyroxene and/or hornblende and/or biotite. Metamorphic grade in this unit decreases from granulite facies in the northeast to amphibolite facies toward the southwest. Correlated with the Big Elk Member of the James Run Formation in Cecil County, Maryland.
Faulkland Gneiss
Predominantly fine- to coarse-grained amphibolites and quartz amphibolites with minor felsic rocks, probably metavolcanic. Major minerals are amphibole and plagioclase with or without pyroxene and/or quartz. Amphibole may be hornblende, cummingtonite, gedrite, and/or anthophyllite. Halos of plagioclase and quartz around porphyroblasts of magnetite, orthopyroxene, and garnet are common features.
Iron Hill Gabbro
Black to very dark green, coarse- to very coarse-grained, uralitized olivine-hypersthene gabbronorite and pyroxenite with subophitic textures. Primary minerals are calcic plagioclase, orthopyroxene, clinopyroxene, and olivine. Amphibole is secondary, a pale blue-green actinolite. Olivine, when present, is surrounded by coronas similar to those in the Bringhurst Gabbro. The gabbronorite is deeply weathered leaving a layer of iron oxides, limonite, goethite, and hematite, mixed with ferruginous jasper. The jasper contains thin seams lined with drusy quartz. Contacts with the Christianstead Gneiss are covered with sediments of the Coastal Plain.