Garnet
OFR54 Bedrock Geologic Map of the Delaware Piedmont
The Piedmont rock units in Delaware, and bedrock geologic map of Schenck et al. (2000) are revised in this report based on new rock geochemistry, geochronometric data, petrography, and recent detailed mapping. Major revisions include:
A.I.duPont Students see geology of the Delaware Piedmont
William "Sandy" Schenck lead a field trip through the Delaware Piedmont for the A.I. duPont High School Earth Science Class. The trip made use of the Wilmington-Western Railroad and everyone rode the railroad's "Doodle Bug." Activities included up close examinations of rock and mineral features and even "Panning for Garnets" at Brandywine Springs Park.
Deal Formation
It is a clayey, calcareous, shelly, glauconitic (10-20 percent) silt. Its colors range from greenish-gray and gray-green to brownish-gray and light gray. It is rich in calcareous and siliceous microfossils. The matrix mineralogy shows a high calcite component, except in the lower part of the formation which is within a calcite dissolution interval. In the lower half of the formation quartz is predominant.
Common Rocks and Minerals of the Delaware Piedmont
The Red Clay Creek has flowed through the rolling hills of northern Delaware for many thousands of years, cutting a deep valley into the old deformed rocks of the Appalachian Piedmont. The Red Clay valley contains many of the common rocks found throughout the Delaware Piedmont.
Baltimore Gneiss
Granitic gneiss with swirling leucosomes and irregular biotite-rich restite layers is the dominant lithology and constitutes approximately 75 to 80 percent of the exposed rocks. The remaining 20 to 25 percent comprises hornblende-biotite gneiss, amphibolite with or without pyroxene, and pegmatite. Granitic gneiss is composed of quartz, plagioclase, biotite, and microcline. Minor and accessory minerals are garnet, muscovite, magnetite, ilmenite, sphene, apatite, and zircon. The hornblende gneiss contains plagioclase, quartz, hornblende, and biotite with/without orthopyroxene. Accessory minerals are garnet, muscovite, clinozoisite, perthitic orthoclase, iron-titanium oxides, sphene, and apatite. Amphibolites are composed of subequal amounts of hornblende and plagioclase with minor quartz, biotite, clinopyroxene, and orthopyroxene.
Setters Formation
In Delaware, predominantly an impure quartzite and garnet-sillimanite-biotite-microcline schist. Major minerals include microcline, quartz, and biotite with minor plagioclase, and garnet. Muscovite and sillimanite vary with metamorphic grade. Accessory minerals are iron-titanium oxides, zircon, sphene, and apatite. Microcline is an essential constituent of the quartzites and schists and serves to distinguish the Setters rocks from the plagioclase-rich schists and gneisses of the Wissahickon Formation.
Wissahickon Formation
Interlayered psammitic and pelitic gneiss with amphibolite. Psammitic gneiss is a medium- to fine-grained biotite-plagioclase-quartz gneiss with or without small garnets. Contacts with pelitic gneiss are gradational. Pelitic gneiss is medium- to coarse-grained garnet-sillimanite-biotite-plagioclase-quartz gneiss. Unit has a streaked or flasered appearance owing to the segregation of garnet-sillimanite-biotite stringers that surround lenses of quartz and feldspar. Throughout, layers of fine to medium-grained amphibolite composed of plagioclase and hornblende, several inches to
Faulkland Gneiss
Predominantly fine- to coarse-grained amphibolites and quartz amphibolites with minor felsic rocks, probably metavolcanic. Major minerals are amphibole and plagioclase with or without pyroxene and/or quartz. Amphibole may be hornblende, cummingtonite, gedrite, and/or anthophyllite. Halos of plagioclase and quartz around porphyroblasts of magnetite, orthopyroxene, and garnet are common features.
Woodlawn Quarry: A GeoAdventure in the Delaware Piedmont
A visit to Woodlawn Quarry is suitable for ages 10 to adults and provides an interesting opportunity to observe common mineral specimens, identify the quarry as an early mining site, appreciate the physical work necessary to quarry rock with hand tools, and discuss the economic importance of the minerals found in the quarry. The minerals that can be readily found and identified in the quarry are feldspar, quartz and mica.