Pyroxene
OFR54 Bedrock Geologic Map of the Delaware Piedmont
The Piedmont rock units in Delaware, and bedrock geologic map of Schenck et al. (2000) are revised in this report based on new rock geochemistry, geochronometric data, petrography, and recent detailed mapping. Major revisions include:
OFR55 Delaware Geological Survey Petrographic Data Viewer
Petrography is a branch of geoscience focused on the description and classification of rocks, primarily by microscopic study of optical properties of minerals. A thin sliver of rock is cut from a sample, mounted on a glass slide, ground to approximately 30 microns (0.03mm), and viewed under a microscope that uses polarized light. By observing the colors produced as plain polarized light and crossed (90 degrees) polarized light shines through the minerals, petrologists can determine the minerals that comprise the sampled rock.
A.I.duPont Students see geology of the Delaware Piedmont
William "Sandy" Schenck lead a field trip through the Delaware Piedmont for the A.I. duPont High School Earth Science Class. The trip made use of the Wilmington-Western Railroad and everyone rode the railroad's "Doodle Bug." Activities included up close examinations of rock and mineral features and even "Panning for Garnets" at Brandywine Springs Park.
Common Rocks and Minerals of the Delaware Piedmont
The Red Clay Creek has flowed through the rolling hills of northern Delaware for many thousands of years, cutting a deep valley into the old deformed rocks of the Appalachian Piedmont. The Red Clay valley contains many of the common rocks found throughout the Delaware Piedmont.
Windy Hills Gneiss
Thinly interlayered, fine- to medium-grained hornblende-plagioclase amphibolite, biotite gneiss, and felsic gneiss, possibly metavolcanic. Felsic gneisses contain quartz and plagioclase with or without microcline with minor pyroxene and/or hornblende and/or biotite. Metamorphic grade in this unit decreases from granulite facies in the northeast to amphibolite facies toward the southwest. Correlated with the Big Elk Member of the James Run Formation in Cecil County, Maryland.
Rockford Park Gneiss
Fine-grained mafic and fine- to medium-grained felsic gneisses interlayered on the decimeter scale. Layers are laterally continuous, but mafic layers commonly show boudinage. Felsic layers are composed of quartz and plagioclase with