Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "cross-sections"

RI78 Subsurface Geology of the Area Between Wrangle Hill and Delaware City, Delaware

RI78 Subsurface Geology of the Area Between Wrangle Hill and Delaware City, Delaware

The geology and hydrology of the area between Wrangle Hill and Delaware City, Delaware, have been the focus of numerous studies since the 1950s because of the importance of the local groundwater supply and the potential environmental impact of industrial activity. In this report, 490 boreholes from six decades of drilling provide dense coverage, allowing detailed characterization of the subsurface geologic framework that controls groundwater occurrence and flow.

The region contains a lower section of tabular Cretaceous strata (Potomac, Merchantville, Englishtown, Marshalltown,and Mount Laurel Formations in ascending order) and a more stratigraphically complex upper section of Pleistocene-to-modern units (Columbia, Lynch Heights, and Scotts Corners Formations, latest Pleistocene and Holocene surficial sediments and estuarine deposits). The lowermost Potomac Formation is a mosaic of alluvial facies and includes fluvial channel sands that function as confined aquifer beds; however, the distribution of aquifer-quality sand within the formation is extremely heterogeneous. The Merchantville Formation serves as the most significant confining layer. The Columbia Formation is predominantly sand and functions as an unconfined aquifer over much of the study area.

To delineate the distribution and character of the subsurface formations, densely spaced structural-stratigraphic cross sections were constructed and structural contour maps were created for the top of the Potomac Formation and base of the Columbia Formation. The Cretaceous formations form a series of relatively parallel strata that dip gently (0.4 degrees) to the southeast. These formations are progressively truncated to the north by more flatly dipping Quaternary sediments, except in a narrow north-south oriented belt on the east side of the study area where the deeply incised Reybold paleochannel eroded into the Potomac Formation.

The Reybold paleochannel is one of the most significant geological features in the study area. It is a relatively narrow sandfilled trough defined by deep incision at the base of the Columbia Formation. It reaches depths of more than 110 ft below sea level with a width as narrow as 1,500 ft. It is interpreted to be the result of scour by the sudden release of powerful floodwaters from the north associated with one or more Pleistocene deglaciations. Where the Reybold paleochannel cuts through the Merchantville confining layer, a potential pathway exists for hydrological communication between Columbia and Potomac aquifer sands.

East of the paleochannel, multiple cut-and-fill units within the Pleistocene to Holocene section create a complex geologic framework. The Lynch Heights and Scotts Corners Formations were deposited along the paleo-Delaware River in the late Pleistocene and are commonly eroded into the older Pleistocene Columbia Formation. They are associated with scarps and terraces that represent several generations of sea-level-driven Pleistocene cut-and-fill. They, in turn, have been locally eroded and covered by Holocene marsh and swamp deposits. The Lynch Heights and Scotts Corners Formations include sands that are unconfined aquifers but complicated geometries and short-distance facies changes make their configuration more complex than that of the Columbia Formation.

Number of Pages: 
28

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 16 (Fairmount and Rehoboth Beach quadrangles). The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

To facilitate the GIS community of Delaware and to release the geologic map of the Fairmount and Rehoboth Beach quadrangles with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 16. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

GM16 Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware

GM16 Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware

The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

Map Scale: 
24,000

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 15 (Geologic Map of the Georgetown Quadrangle, Delaware). The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit but is thought to be between late Pliocene to early Pleistocene in age. Refer to Ramsey, 2010 (DGS Report of Investigations No. 76) for details regarding the stratigraphic units.

To facilitate the GIS community of Delaware and to release the geologic map of the Georgetown Quadrangle with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 15. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit. Stratigraphic relationships in Delaware indicate that it is no older than late Miocene and no younger than early Pleistocene. Regional correlations based on similarities of depositional style, stratigraphic position, and sediment textures suggest that it is likely late Pliocene in age; correlative with the Bacons Castle Formation of Virginia (Ramsey, 1992, 2010).

Map Scale: 
24,000

MS6 Cross Section of Pliocene and Quaternary Deposits Along the Atlantic Coast of Delaware

Cross Section of Pliocene and Quaternary Deposits Along the Atlantic Coast of Delaware

Exploration for sand resources for beach nourishment has led to an increase in the amount of geologic data available from areas offshore Delaware's Atlantic Coast. These data are in the form of cores, core logs, and seismic reflection profiles. In order to provide a geologic context for these offshore data, this cross section has been constructed from well and borehole data along Delaware's Atlantic coastline from Cape Henlopen to Fenwick Island. Placing the offshore data in geologic context is important for developing stratigraphic and geographic models for predicting the location of stratigraphic units found offshore that may yield sand suitable for beach nourishment. The units recognized onshore likely extend offshore to where they are truncated by younger units or by the present seafloor.

MS3 Geologic Cross-Section of Delaware River, Red Lion Creek to Killcohook National Wildlife Refuge

Geologic Cross-Section of Delaware River, Red Lion Creek to Killcohook National Wildlife Refuge

Test borings made in preparation for construction of a power line
across the 2.3 miles wide Delaware River provided an opportunity to
investigate the geology beneath the river which is otherwise inaccessible.
The information is of value in studies of ground-water development
near the River and for other engineered works as well as
understanding the geologic history of a major feature of the State.

This page tagged with:

OFR6 Geologic Cross-Sections, Cenozoic Sediments of the Delmarva Peninsula and Adjacent Area

OFR6 Geologic Cross-Sections, Cenozoic Sediments of the Delmarva Peninsula and Adjacent Area

Geologic Cross-Sections, Cenozoic Sediments of the Delmarva Peninsula and Adjacent Area

OFR39 Basic Data for the Geologic Map of the Seaford Area, Delaware

OFR39 Basic Data for the Geologic Map of the Seaford Area, Delaware

The Seaford area geologic mapping project (Andres and Ramsey, 1995) was conducted by Delaware Geological Survey (DGS) staff and focused on the Seaford East (SEE) and Delaware portion of the Seaford West (SEW) quadrangles (Fig. 1). Data evaluated in support of mapping from these quadrangles and surrounding areas are documented in this report.

What are GeoAdventures?

The Wilmington Western Railroad follows the Red Clay Valley through the Delaware Piedmont cutting through many of the Piedmont rock units.

GeoAdventures are designed to allow the reader to learn about a particular geologic point of interest in Delaware’s Piedmont province and then take a short field trip to that area. Want to know more about the Wilmington blue rock or Brandywine blue granite? Take the Wilmington Blue Rock GeoAdventure and go see just what the blue rock looks like.

GM14 Geologic Map of Kent County, Delaware

GM14 Geologic Map of Kent County, Delaware

This map shows the surficial geology of Kent County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water. Geologic maps are also used to identify geologic hazards, such as flood-prone areas, to identify sand and gravel resources, and to support state, county, and local land-use and planning decisions.

Map Scale: 
100,000

GM13 Geologic Map of New Castle County, Delaware

GM13 Geologic Map of New Castle County, Delaware

This map shows the surficial geology of New Castle County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water. Geologic maps are also used to identify geologic hazards, such as sinkholes and flood-prone areas, to identify sand and gravel resources, and for supporting state, county, and local land-use and planning decisions.

Map Scale: 
100,000
This page tagged with:

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

The surficial geology of the Lewes and Cape Henlopen quadrangles reflects the geologic history of the Delaware Bay estuary and successive high and low stands of sea levels during the Quaternary. The subsurface Beaverdam Formation was deposited as part of a fluvial-estuarine system during the Pliocene, the sediments of which now form the core of the Delmarva Peninsula. Following a period of glacial outwash during the early Pleistocene represented by the Columbia Formation found to the northwest of the map area (Ramsey, 1997), the Delaware River and Estuary developed their current positions. The Lynch Heights and Scotts Corners Formations (Ramsey, 1993, 1997, 2001) represent shoreline and estuarine deposits associated with high stands of sea level during the middle to late Pleistocene on the margins of the Delaware Estuary. In the map area, the Lynch Heights Formation includes relict spit and dune deposits at the ancestral intersection of the Atlantic Coast and Delaware Bay systems, similar in geomorphic position to the modern Cape Henlopen.

Map Scale: 
24,000

GM11 Geology of the Ellendale and Milton Quadrangles, Delaware

GM11 Geology of the Ellendale and Milton Quadrangles, Delaware

The surficial geology of the Ellendale and Milton quadrangles reflects the geologic history of the Delaware Bay estuary and successive high and low sea levels during the Quaternary. Ramsey (1992) interpreted the Beaverdam Formation as deposits of a fluvial-estuarine system during the Pliocene. Sediment supply was high, in part due to geomorphic adjustments in the Appalachians related to the first major Northern Hemisphere glaciations around 2.4 million years ago. The Beaverdam Formation forms the core of the central Delmarva Peninsula around which wrap the Quaternary deposits.

Map Scale: 
24,000

GM9 Geology of the Seaford Area, Delaware

GM9 Geology of the Seaford Area, Delaware

This map shows the distribution of geologic units found at or near land surface. These units support agriculture and development, are mined for sand and gravel resources, and are the surface-to-subsurface pathway for water. Previous maps and reports covering the same of adjacent areas have focused on hydrogeology (Andres, 1994), surficial geology on a regional basis (Jordan, 1964, 1974; Owens and Denny, 1979, 1986; Denny et al., 1979; Ramsey and Schenck, 199), or subsurface geology (Hansen, 1981; Andres, 1986).

Map Scale: 
24,000

GM8 Geology of the Milford and Mispillion River Quadrangles, Delaware

Geology of the Milford and Mispillion River Quadrangles, Delaware

This map is the first detailed surficial geologic map in southern Kent and northern Sussex counties. Other maps covering the same or adjacent areas have focused on subsurface geology (Benson and Pickett, 1986), hydrogeology (Talley, 1982), or surficial geology on a regional basis (Jordan, 1964; Owens and Denny, 1979; Ramsey and Schenck, 1990). The purpose of this map is to show the distribution of geologic units found at or near the present land surface. These units are composed of the geologic materials that support agriculture and development, are mined for sand and gravel resources, and are the surface-to-subsurface pathway for water.

Map Scale: 
24,000