Windy Hills Gneiss
OFR54 Bedrock Geologic Map of the Delaware Piedmont
The Piedmont rock units in Delaware, and bedrock geologic map of Schenck et al. (2000) are revised in this report based on new rock geochemistry, geochronometric data, petrography, and recent detailed mapping. Major revisions include:
OFR55 Delaware Geological Survey Petrographic Data Viewer
Petrography is a branch of geoscience focused on the description and classification of rocks, primarily by microscopic study of optical properties of minerals. A thin sliver of rock is cut from a sample, mounted on a glass slide, ground to approximately 30 microns (0.03mm), and viewed under a microscope that uses polarized light. By observing the colors produced as plain polarized light and crossed (90 degrees) polarized light shines through the minerals, petrologists can determine the minerals that comprise the sampled rock.
Outcrop Cb42-c: Windy Hills Bridge Outcrop
Considered one of Delaware's most famous Piedmont outcrops, the Windy Hills Bridge outcrop is composed of mafic and felsic gneiss of the Windy Hills Gneiss. Much of the layering in the outcrop is regular and is 8 to 10" thick. At the contact between these layers there is evidence of partial melting. In terms of mineralogy, this rock contains mainly hornblende, plagioclase, quartz, biotite and epidote. This outcrop shows tight folds that plunge steeply 70-90 degrees to the northeast and southwest. The gneiss is cut by a long lens of pegmatite, which intruded after the folding and metamorphosing that yielded the gneiss.
There is also an interesting layer of cobble just above the bedrock in this area presumed to be the contact with the Coastal Plain sediments. These newer outcrops to the southwest display a 4-10" pelitic layer which becomes more extremely magmatic, with 1" leucosomes and ½" mafic selvages.
Overall, strikes of foliations of the mafic and felsic layering in these outcrops are 70-75 degrees east of north and the dips are a steep 80-85 degrees to the southeast, or almost vertical.
Windy Hills Gneiss
Thinly interlayered, fine- to medium-grained hornblende-plagioclase amphibolite, biotite gneiss, and felsic gneiss, possibly metavolcanic. Felsic gneisses contain quartz and plagioclase with or without microcline with minor pyroxene and/or hornblende and/or biotite. Metamorphic grade in this unit decreases from granulite facies in the northeast to amphibolite facies toward the southwest. Correlated with the Big Elk Member of the James Run Formation in Cecil County, Maryland.
RI59 Bedrock Geology of the Piedmont of Delaware and Adjacent Pennsylvania
This report accompanies a new map that revises the original bedrock geologic maps of the Delaware Piedmont compiled by Woodruff and Thompson and published by the Delaware Geological Survey (DGS) in 1972 and 1975. Combined detailed mapping, petrography, geochemistry, and U-Pb geochronology have allowed us to redefine two rock units and formally recognize eleven new units. A section of the Pennsylvania Piedmont is included on the new map to show the entire extent of the Mill Creek Nappe and the Arden Plutonic Supersuite.
Deformation in the Piedmont
All the rock units in Delaware’s Piedmont are highly deformed. Deformational features, such as folds, faults, and/or joints, are present in almost every outcrop.
What are GeoAdventures?
GeoAdventures are designed to allow the reader to learn about a particular geologic point of interest in Delaware’s Piedmont province and then take a short field trip to that area. Want to know more about the Wilmington blue rock or Brandywine blue granite? Take the Wilmington Blue Rock GeoAdventure and go see just what the blue rock looks like.
GM10 Bedrock Geologic Map of the Piedmont of Delaware and Adjacent Pennsylvania
This is a map of the crystalline bedrock units in the Piedmont of Delaware and adjacent Pennsylvania. The southern boundary of the mapped area is the updip limit of the Potomac Formation (Woodruff and Thompson, 1972, 1975). Soil, regolith, and surficial deposits of Quaternary age are not shown.