Scotts Corners Formation

GM16 Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware

The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

RI76 Stratigraphy, Correlation, and Depositional Environments of the Middle to Late Pleistocene Interglacial Deposits of Southern Delaware

Rising and highstands of sea level during the middle to late Pleistocene deposited swamp to nearshore sediments along the margins of an ancestral Delaware Bay, Atlantic coastline, and tributaries to an ancestral Chesapeake Bay. These deposits are divided into three lithostratigraphic groups: the Delaware Bay Group, the Assawoman Bay Group (named herein), and the Nanticoke River Group (named herein). The Delaware Bay Group, mapped along the margins of Delaware Bay, is subdivided into the Lynch Heights Formation and the Scotts Corners Formation.

RI55 Geology of the Milford and Mispillion River Quadrangles

Investigation of the Neogene and Quaternary geology of the Milford and Mispillion River quadrangles has identified six formations: the Calvert, Choptank, and St. Marys formations of the Chesapeake Group, the Columbia Formation, and the Lynch Heights and Scotts Comers formations of the Delaware Bay Group. Stream, swamp, marsh, shoreline, and estuarine and bay deposits of Holocene age are also recognized. The Calvert, Choptank, and St. Marys formations were deposited in inner shelf marine environments during the early to late Miocene.

Scotts Corners Formation

Heterogeneous unit of light-gray to brown to light-yellowish-brown, coarse to fine sand, gravelly sand and pebble gravel with rare discontinuous beds of organic-rich clayey silt, clayey silt, and pebble gravel. Sands are quartzose with some feldspar and muscovite. Commonly capped by one to two feet of silt to fine sandy silt. Laminae of opaque heavy minerals are common. Unit underlies a terrace parallel to the present Delaware River that has elevations less than 25 feet. Interpreted to be a transgressive unit consisting of swamp, marsh, estuarine channel, beach, and bay deposits. Climate during the time of deposition was temperate to warm temperate as interpreted from fossil pollen assemblages (Ramsey, 1997). Overall thickness of the unit rarely exceeds 20 feet.

OFR49 Hydrologeologic Framework of Southern New Castle County

Southern New Castle County is dependent on ground water for nearly all of its water supply. The area has been undergoing development from predominately agricultural land use to urban/suburban land use (Delaware Water Supply Coordinating Council [WSCC], 2006). With this development comes a need to more accurately predict the availability of ground water to reduce the potential of overusing the resource. This report has 3 plates listed as separate files.

Coastal Plain Rock Units (Stratigraphic Chart)

The geology of Delaware includes parts of two geologic provinces: the Appalachian Piedmont Province and the Atlantic Coastal Plain Province. The Piedmont occurs in the hilly northernmost part of the state and is composed of crystalline metamorphic and igneous rocks. This chart summarizes the age and distribution of the geologic units that are recognized in the state by the Delaware Geological Survey.

GM14 Geologic Map of Kent County, Delaware

This map shows the surficial geology of Kent County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water.

GM13 Geologic Map of New Castle County, Delaware

This map shows the surficial geology of New Castle County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water.

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

The surficial geology of the Lewes and Cape Henlopen quadrangles reflects the geologic history of the Delaware Bay estuary and successive high and low stands of sea levels during the Quaternary. The subsurface Beaverdam Formation was deposited as part of a fluvial-estuarine system during the Pliocene, the sediments of which now form the core of the Delmarva Peninsula. Following a period of glacial outwash during the early Pleistocene represented by the Columbia Formation found to the northwest of the map area (Ramsey, 1997), the Delaware River and Estuary developed their current positions.

GM11 Geology of the Ellendale and Milton Quadrangles, Delaware

The surficial geology of the Ellendale and Milton quadrangles reflects the geologic history of the Delaware Bay estuary and successive high and low sea levels during the Quaternary. Ramsey (1992) interpreted the Beaverdam Formation as deposits of a fluvial-estuarine system during the Pliocene. Sediment supply was high, in part due to geomorphic adjustments in the Appalachians related to the first major Northern Hemisphere glaciations around 2.4 million years ago. The Beaverdam Formation forms the core of the central Delmarva Peninsula around which wrap the Quaternary deposits.