Silurian Period

438 to 408 mya

OFR54 Bedrock Geologic Map of the Delaware Piedmont

The Piedmont rock units in Delaware, and bedrock geologic map of Schenck et al. (2000) are revised in this report based on new rock geochemistry, geochronometric data, petrography, and recent detailed mapping. Major revisions include:

OFR55 Delaware Geological Survey Petrographic Data Viewer

Petrography is a branch of geoscience focused on the description and classification of rocks, primarily by microscopic study of optical properties of minerals. A thin sliver of rock is cut from a sample, mounted on a glass slide, ground to approximately 30 microns (0.03mm), and viewed under a microscope that uses polarized light. By observing the colors produced as plain polarized light and crossed (90 degrees) polarized light shines through the minerals, petrologists can determine the minerals that comprise the sampled rock.

Biotite Tonalite

Fine- to medium-grained, equigranular biotite tonalite usually occurring as rounded boulders. Tonalites are leucocratic (15 to 25% modal mafic minerals), light gray to buff on fresh surfaces, and locally contain mafic enclaves with reddish rims, the result of iron hydroxide staining. Possibly intrusive into the Perkins Run Gabbronorite Suite.

Geologic History of the Delaware Piedmont

The Delaware Piedmont is but a small part of the Appalachian Mountain system that extends from Georgia to Newfoundland. This mountain system is the result of tectonic activity that took place during the Paleozoic era, between 543 and 245 million years ago. Since that time, the mountains have been continuously eroding, and their deep roots slowly rising in compensation as the overlying rocks are removed. It is surprising to find that although the Delaware Piedmont has passed through the whole series of tectonic events that formed the Appalachians, the mineralogy and structures preserved in Delaware were formed by the early event that occurred between 470 and 440 million years ago, called the Taconic orogeny.

Perkins Run Gabbronorite Suite

Fine- to coarse-grained gabbronorite and minor diorite with subophitic to ophitic textures, variably foliated or lineated. Plagioclase, orthopyroxene, clinopyroxene, and hornblende are major minerals; biotite and olivine locally present. Olivine typically surrounded by corona structures as described for the Bringhurst Gabbro. Contemporaneous with the Ardentown Granitic Suite.

Ardentown Granitic Suite

Medium- to coarse-grained granitic rocks containing primary orthopyroxene and clinopyroxene; includes quartz norites, quartz monzonorites, opdalites, and charnockites. Feldspar phenocrysts common. Mafic enclaves locally abundant in proximity to gabbronorites.

Bringhurst Gabbro

Coarse- to very coarse-grained gabbronoite with subophitic textures. Primary minerals are plagioclase, olivine, clinopyroxene and orthopyroxene. Olivine, where present, is surrounded by an inner corona of orthopyroxene and an outer corona of pargasitic hornblende, both with spinel symplectites. The gabbronorites locally contain abundant xenoliths of mafic Brandywine Blue Gneiss.