Upper Cretaceous

GM27 Geologic Map of the Elkton, Saint Georges, and Delaware City Quadrangles, Delaware

Geologic mapping was conducted at 1:12,000 with a 1-ft contour basemap. In some instances, stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using LiDAR data. Elevations of stratigraphic contacts along stream valleys are projected from subsurface data. Except for a few erosional bluffs, these contacts are covered by colluvium. This map supersedes this portion of Geology of the Chesapeake and Delaware Canal Area, Delaware: Delaware Geological Survey Geologic Map Series No.

GM26 Geologic Map of the Cecilton and Middletown Quadrangles, Delaware

Mapping was conducted using field maps at a scale of 1:12,000 with 2-ft contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map. Most stratigraphic units mapped in stream valleys are projected from subsurface data. Except for a few erosional bluffs, these units are covered by colluvium. This map supersedes Geology of the Middletown-Odessa Area, Delaware: Delaware Geological Survey Geologic Map Series No. 2 (Pickett and Spoljaric, 1971).

OFR52 Results of Groundwater Flow Simulations In the East Dover Area, Delaware

In 2015, staff of the Water Supply Section of the Delaware Department of Natural Resources and Environmental Control (DNREC) informed the DGS of their concerns about overpumping of the unconfined Columbia aquifer in an area east of Dover (Figure 1). In this area, the City of Dover’s Long Point Road Wellfield (LPRW) and numerous irrigation systems pump water from the shallow Columbia aquifer.

GM24 Geologic Map of the Millington, Clayton and Smyrna Quadrangles, Delaware

The geological history of the surficial units of the Clayton, Smyrna, and the Delaware portion of the Millington Quadrangles are the result of deposition of the Beaverdam Formation and its modification by erosion and deposition of the Columbia Formation during the early Pleistocene. These units were then modified by the Lynch Heights and Scotts Corners Formations as a result of sea-level fluctuations during the middle to late Pleistocene. The geology is further complicated by periglacial activity that produced Carolina Bay deposits in the map area, which modified the land surface.

Dinosaurs in Delaware?

Only fragmentary remains of dinosaurs have been found in Delaware. All of these have come from the Chesapeake and Delaware Canal, mainly from the spoil piles created by the dredging of the Canal. Various nature groups in Delaware lead trips to the Canal for collecting. Most of the fossils found are those of marine invertebrates (primarily bivalves and gastropods with some remains of sponges, ammonites, and belemnites).

Magothy Formation

Dark-gray to gray silty clay to clayey silt that contains abundant fragments of lignite; grades downward into a very fine to fine sand with scattered and discontinuous thin beds of clayey silt with lignite fragments. Thickness ranges from 20 to 50 ft. Updip in the vicinity of the Chesapeake and Delaware Canal, the Magothy fills channels incised into the Potomac Formation and is discontinuous in its extent. Interpreted to have been deposited in coastal to nearshore environments.

Merchantville Formation

Light- to dark-gray, very micaceous, glauconitic, very silty fine- to very fine-grained sand to fine sandy silt. Ranges from 20 to 120 ft in thickness. Marine in origin.