lower Miocene

GM26 Geologic Map of the Cecilton and Middletown Quadrangles, Delaware

Mapping was conducted using field maps at a scale of 1:12,000 with 2-ft contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map. Most stratigraphic units mapped in stream valleys are projected from subsurface data. Except for a few erosional bluffs, these units are covered by colluvium. This map supersedes Geology of the Middletown-Odessa Area, Delaware: Delaware Geological Survey Geologic Map Series No. 2 (Pickett and Spoljaric, 1971).

OFR52 Results of Groundwater Flow Simulations In the East Dover Area, Delaware

In 2015, staff of the Water Supply Section of the Delaware Department of Natural Resources and Environmental Control (DNREC) informed the DGS of their concerns about overpumping of the unconfined Columbia aquifer in an area east of Dover (Figure 1). In this area, the City of Dover’s Long Point Road Wellfield (LPRW) and numerous irrigation systems pump water from the shallow Columbia aquifer.

GM24 Geologic Map of the Millington, Clayton and Smyrna Quadrangles, Delaware

The geological history of the surficial units of the Clayton, Smyrna, and the Delaware portion of the Millington Quadrangles are the result of deposition of the Beaverdam Formation and its modification by erosion and deposition of the Columbia Formation during the early Pleistocene. These units were then modified by the Lynch Heights and Scotts Corners Formations as a result of sea-level fluctuations during the middle to late Pleistocene. The geology is further complicated by periglacial activity that produced Carolina Bay deposits in the map area, which modified the land surface.

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit. Stratigraphic relationships in Delaware indicate that it is no older than late Miocene and no younger than early Pleistocene.

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

The Bethany Beach borehole (Qj32-27) provides a nearly continuous record of the Oligocene to Pleistocene formations of eastern Sussex County, Delaware. This 1470-ft-deep, continuously cored hole penetrated Oligocene, Miocene, and Pleistocene stratigraphic units that contain important water-bearing intervals. The resulting detailed data on lithology, ages, and environments make this site an important reference section for the subsurface geology of the region.