Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

DGS Projects

Delaware Groundwater Monitoring Network

The Delaware Geological Survey (DGS) currently monitors groundwater levels in a network of 68 wells in Delaware. Long time-series of water levels in major aquifers serve as critical baseline data for resource management and analyses of aquifer response to pumping, climatic variability, drought hazards, seawater intrusion, and interaction with streams and their ecosystems.

Mapping Tsunami Inundation for the U.S. East Coast

National Tsunami Hazard Mitigation Program
Project Contact(s):

This project will assess tsunami hazard from the above mentioned and other relevant tsunami sources recently studied in the literature and model the corresponding tsunami inundation in affected US East coast communities. We will combine ocean scale simulations of transoceanic tsunami sources, such as Lisbon 1755 like or Puerto Rico Trench co-seismic events, and CVV collapse, with regional scale simulations of these events, along with the regional scale SMF events, in order to establish the relative degree of hazards for East Coast communities. Detailed inundation studies will be conducted for highest-risk East Coast communities, and results of these studies will be used to construct a first-generation of tsunami inundation maps for the chosen communities.

Web-Delivered Application for Hydrogeologic Data

Project Contact(s):

This project is designed to deliver, by web-based technologies, the most commonly available and requested geologic and hydrologic information used in hydrologic studies required by regulation and ordinance and used by state agencies to support resource-management decisions. Available information can be associated with points or areas. Information associated with points includes descriptive logs, geophysical logs, raw and interpreted groundwater levels, aquifer and geologic unit identification, and hydraulic characteristics of wells. Information associated with areas is either in the form of raster-based (grid) data or polygons. Examples of raster-based data include water-table depths and elevations, tops and thicknesses of geologic and aquifer units, and aquifer transmissivity. Examples of polygons include surficial geology and groundwater recharge potential.

The intent of developing a web-technology enabled system is to provide a more intuitive and comprehensive toolset for locating, quickly viewing, and downloading the desired information in an efficient, extensible, and familiar manner.

Temporal Imaging of the Intertidal Critical Zone

Time series of thermal images showing increasing temperature (yellow, orange, and red) as warm tidal water flows over a saltmarsh near Bowers Beach, Delaware during a summer evening (June 2009).
Project Contact(s):

We are developing an innovative ground-based imaging system to collect multi-spectral imagery (visible, near and thermal infrared bands) at time-scales (minutes/hours) below those of the dominant processes in intertidal environments (semi-diurnal tides, day/night). A modular system based on mature imaging technology is being assembled for science missions by foot, boat, truck, tower, and lift. This project consists of some critical laboratory studies to test our conceptual framework.

Wastewater Reuse: Benefits and Risk Assessment in Inland Bays Indian River Basin

Study domain
Project Contact(s):

The goal of this project is to develop a three-dimensional (3D) numerical groundwater flow model to evaluate the potential impacts to surface- and groundwater resulting from the disposal of treated wastewater in a portion of the Inland Bays drainage basin.

By developing a sub-regional, fresh, groundwater flow model and analyzing results, several issues will be addressed that are related to state policy, regulation revision, and proposed projects associated with land-based wastewater disposal (LBWD) in Sussex County.

Quantifying Geologic and Temporal Controls on Water and Chemical Exchange between Groundwater and Surface Water in Coastal Estuarine Systems

Conceptual models for submarine groundwater discharge
Project Contact(s):

Eutrophication is one of the most common and most severe problems facing coastal bays in
populated and agricultural areas. Unnaturally high quantities of nutrients enter fresh groundwater and surface water as a result of human activities. These nutrients contribute to the overpopulation of phytoplankton and macroalgae in coastal surface waters, which results in deterioration of water quality and animal habitat. This is a particular problem in the Delmarva region, where poultry farms, agricultural activity, and growing human populations have contributed to rapidly declining populations of blue crabs, striped bass, and many other species which live and breed in estuarine waters. The economic value of these species has, in part, prompted political action and efforts to manage nutrient inputs to groundwater and surface water, the primary pathways for nutrient loading to coastal waters. Despite significant reductions, coastal water quality has largely remained poor. A better understanding of the processes that moderate nutrient loading to coastal waters, particularly via groundwater, which is much more difficult to monitor than surface water inputs, is essential for improved management methods that will result in healthy coastal ecosystems. This project will improve understanding of where nutrients are coming from and how loading may be reduced, and may aid in identification of activities that exacerbate negative impacts.

Outer Continental Shelf Core and Sample Repository

Project Contact(s):

The Delaware Geological Survey's Outer Continental Shelf (OCS) Core and Sample Repository is a large collection of cores and samples from oil and gas wells drilled offshore the Atlantic Coast of the U.S. during the 1970s and 1980s. This collection was assembled from the contributions of federal agencies, other state agencies, and private institutions that have recognized the value of having a centralized repository for this material.

Delaware Geological Survey Digital Data Preservation

The goal of this project is consistent with the goals of the National Geological and Geophysical Data Preservation Program: to create metadata for geologic data that can populate the National Digital Catalog. Specifically, this project focuses on metadata for the digital photograph holdings of the Delaware Geological Survey and scanning of analog imagery and slides into digital products.

This page tagged with:

Characterization of Tidal Wetland Inundation in the Murderkill River Estuary

Webbs Marsh, Murderkill River Estuary
Project Contact(s):

The project supports work by the Kent County Levy Court (Kent County) to evaluate the nutrient TMDLS for the tidal portion of the Murderkill River. The project will contribute to a more robust parameterization of river-marsh interaction in the water-quality model that is being developed for the Murderkill River by Kent County. The purpose of the project is to characterize the spatial and temporal inundation of a salt marsh in the Murderkill River Estuary and to determine the feasibility of using heat as a tracer of flow to characterize inundation of other marshes in the estuary.

Delaware Offshore Geologic Inventory

Delaware Offshore Geologic Inventory Map
Project Contact(s):

Since 1992, the Delaware Geological Survey (DGS) has compiled a geologic database known as the Delaware Offshore Geologic Inventory (DOGI) that consists of sediment samples, radiocarbon and amino acid racemization dates, seismic profiles, and vibracores taken from the nearshore and inner continental shelf in state and federal waters. Most of the 366 vibracores are stored at the DGS on-site core and sample repository.