Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

DGS Projects

OneGeology

DGS participates in OneGeology initiative
Project Contact(s):

OneGeology (http://www.onegeology.org/) is an international effort to make available digital geologic map data from around the world. DGS participates in OneGeology by submitting two web map services, one for 1:100K scale surficial geologic units and one for 1:100K scale surficial geologic contacts. These services are open and interoperable (supporting both WMS and WFS protocols) with data attributes in GeoSciML-Portrayal format.

Delaware Geologic Information Resource (DGIR) Map Viewer

DGIR Map Viewer Screenshot
Project Contact(s):

The Delaware Geologic Information Resource (DGIR) is an online data display tool and map viewer for a variety of geologic and hydrologic information released by the Delaware Geological Survey. It was designed to deliver the most commonly available and requested geologic and hydrologic information that is appropriate for use in hydrologic studies, required by regulation and ordinance, and to support state resource management decisions.

Evaluation of Rapid Infiltration Basin Systems (RIBS)

Diagram of a Rapid Infiltration Basin Systems (RIBS)
Project Contact(s):

This study has evaluated pre-treatment and physical and geochemical components of rapid infiltration basin systems (RIBS). The project was begun in 2008 with an evaluation of performance of treatment plants associated with RIBS in Delaware, Massachusetts, North Carolina, and New Jersey. Field and simulation evaluations of a RIBS located at Cape Henlopen State Park were completed in 2011. Simulation studies of infiltration and nitrogen cycling in the vadose zone were completed in early 2013. Multiple conference presentations, reports, and articles are now being released.

United States Geoscience Information Network (USGIN)

United States Geoscience Information Network (USGIN)
Project Contact(s):

The United States Geoscience Information Network (USGIN) initiative is the product of a partnership between the Association of American State Geologists (AASG) and the United States Geological Survey (USGS) created to facilitate discovery of, and access to, geoscience information provided by state and federal geological surveys of the United States. DGS has entered into a partnership with the Arizona Geological Survey (AZGS) to participate in USGIN by establishing a metadata clearinghouse node for Delaware.

This page tagged with:

Delaware Groundwater Monitoring Network

The Delaware Geological Survey (DGS) currently monitors groundwater levels in a network of 68 wells in Delaware. Long time-series of water levels in major aquifers serve as critical baseline data for resource management and analyses of aquifer response to pumping, climatic variability, drought hazards, seawater intrusion, and interaction with streams and their ecosystems.

Mapping Tsunami Inundation for the U.S. East Coast

National Tsunami Hazard Mitigation Program
Project Contact(s):

This project will assess tsunami hazard from the above mentioned and other relevant tsunami sources recently studied in the literature and model the corresponding tsunami inundation in affected US East coast communities. We will combine ocean scale simulations of transoceanic tsunami sources, such as Lisbon 1755 like or Puerto Rico Trench co-seismic events, and CVV collapse, with regional scale simulations of these events, along with the regional scale SMF events, in order to establish the relative degree of hazards for East Coast communities. Detailed inundation studies will be conducted for highest-risk East Coast communities, and results of these studies will be used to construct a first-generation of tsunami inundation maps for the chosen communities.

Web-Delivered Application for Hydrogeologic Data

Project Contact(s):

This project is designed to deliver, by web-based technologies, the most commonly available and requested geologic and hydrologic information used in hydrologic studies required by regulation and ordinance and used by state agencies to support resource-management decisions. Available information can be associated with points or areas. Information associated with points includes descriptive logs, geophysical logs, raw and interpreted groundwater levels, aquifer and geologic unit identification, and hydraulic characteristics of wells. Information associated with areas is either in the form of raster-based (grid) data or polygons. Examples of raster-based data include water-table depths and elevations, tops and thicknesses of geologic and aquifer units, and aquifer transmissivity. Examples of polygons include surficial geology and groundwater recharge potential.

The intent of developing a web-technology enabled system is to provide a more intuitive and comprehensive toolset for locating, quickly viewing, and downloading the desired information in an efficient, extensible, and familiar manner.

Temporal Imaging of the Intertidal Critical Zone

Time series of thermal images showing increasing temperature (yellow, orange, and red) as warm tidal water flows over a saltmarsh near Bowers Beach, Delaware during a summer evening (June 2009).
Project Contact(s):

We are developing an innovative ground-based imaging system to collect multi-spectral imagery (visible, near and thermal infrared bands) at time-scales (minutes/hours) below those of the dominant processes in intertidal environments (semi-diurnal tides, day/night). A modular system based on mature imaging technology is being assembled for science missions by foot, boat, truck, tower, and lift. This project consists of some critical laboratory studies to test our conceptual framework.

Quantifying Geologic and Temporal Controls on Water and Chemical Exchange between Groundwater and Surface Water in Coastal Estuarine Systems

Conceptual models for submarine groundwater discharge
Project Contact(s):

Eutrophication is one of the most common and most severe problems facing coastal bays in
populated and agricultural areas. Unnaturally high quantities of nutrients enter fresh groundwater and surface water as a result of human activities. These nutrients contribute to the overpopulation of phytoplankton and macroalgae in coastal surface waters, which results in deterioration of water quality and animal habitat. This is a particular problem in the Delmarva region, where poultry farms, agricultural activity, and growing human populations have contributed to rapidly declining populations of blue crabs, striped bass, and many other species which live and breed in estuarine waters. The economic value of these species has, in part, prompted political action and efforts to manage nutrient inputs to groundwater and surface water, the primary pathways for nutrient loading to coastal waters. Despite significant reductions, coastal water quality has largely remained poor. A better understanding of the processes that moderate nutrient loading to coastal waters, particularly via groundwater, which is much more difficult to monitor than surface water inputs, is essential for improved management methods that will result in healthy coastal ecosystems. This project will improve understanding of where nutrients are coming from and how loading may be reduced, and may aid in identification of activities that exacerbate negative impacts.