Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Sussex County"

RI46 Shallow Subsurface Temperatures at Selected Locations in Delaware

RI46 Shallow Subsurface Temperatures at Selected Locations in Delaware

Subsurface temperatures were measured in instrumented boreholes for about one and one-half years at depths down to 10 feet below land surface at four locations in the State. In New Castle County, temperatures were measured periodically in the field about twice a month at three sites, and, in Sussex County, they were automatically recorded every 15 minutes at one site. The depths of interest are generally in the unsaturated zone and are subject to both daily temperature fluctuations and longer seasonal changes.

RI45 Effects of Agricultural Practices and Septic-System Effluent on the Quality of Water in the Unconfined Aquifer in Parts of Eastern Sussex County, Delaware

RI45 Effects of Agricultural Practices and Septic-System Effluent on the Quality of Water in the Unconfined Aquifer in Parts of Eastern Sussex County, Delaware

The unconfined aquifer is a major source of water supply in eastern Sussex County, Delaware. It also is an important source of water for surface-water bodies and deeper, confined aquifers. The aquifer consists mainly of permeable sand and gravel; its shallow water table is susceptible to contamination by nitrate and other chemical constituents associated with agricultural practices and effluent from septic systems.

RI42 Stratigraphy and Depositional History of the Post-Choptank Chesapeake Group

RI42 Stratigraphy and Depositional History of the Post-Choptank Chesapeake Group

Onshore and offshore geological and geophysical data were used to investigate the lithostratigraphy, seismic stratigraphy, and depositional history of the late Tertiary age post-Choptank Chesapeake Group rocks in Sussex County, Delaware and adjacent counties in Maryland. The results of this investigation suggest that the St. Marys (?) Formation and the sandy interval of which the Manokin aquifer is a part, are distinct lithostratigraphic units. The Manokin formation is proposed as an informal lithostratigraphic unit that refers to the sandy interval of which the Manokin aquifer is a part. On a regional scale, the section containing the Ocean City and Pocomoke aquifers and adjacent and intervening confining beds is best treated as a single undifferentiated lithostratigraphic unit. The Bethany formation is proposed as an informal lithostratigraphic unit that refers to this section.

RI41 Hydrogeology and Geochemistry of the Unconfined Aquifer, West-Central and Southwestern Delaware

RI41 Hydrogeology and Geochemistry of the Unconfined Aquifer, West-Central and Southwestern Delaware

The unconfined aquifer is the major source of water supply in west-central and southwestern Delaware. The aquifer, which is composed of quartz sand, gravel, clay, and silt, ranges in thickness from 20 to 200 feet. The water table ranges from land surface to about 20 feet below land surface. Analyses of water from wells distributed throughout the area were used to study processes controlling the chemical quality of the water in the unconfined aquifer.

SP14 Basic Hydrologic Data for Coastal Sussex County, Delaware

SP14 Basic Hydrologic Data for Coastal Sussex County, Delaware

There is no abstract on file for this publication.

Groundwater Resources of Sussex County (with an update for Kent County)

Project Contact(s):

This project is an integrated geologic/hydrologic study that will update our knowledge of the unconfined aquifers, confined aquifers, and groundwater resources of Sussex County. In addition, this project will utilize the results of recently completed study of the aquifer geology of Kent County (McLaughlin and Velez, 2005) to better define the groundwater resources of Kent County. The products to be produced by this study include aquifer depth and thickness maps and geologic cross sections for Sussex County. Products will also include a summary of basic hydrologic characteristics of aquifers in Kent and Sussex County and an analysis of water use for each aquifer.

OFR20 Configuration of the Base and Thickness of the Unconfined Aquifer in Southeastern Sussex County, Delaware

OFR20 Configuration of the Base and Thickness of the Unconfined Aquifer in Southeastern Sussex County, Delaware

The purpose of this study was to map the thickness and the configuration of the base of the unconfined aquifer in southeastern Sussex County, Delaware (figure 1). The unconfined aquifer provides much of the water used in this part of the State and is the first unit to be affected by pollution or waste disposal problems. Contour maps and geologic sections were prepared from available geologic, geophysical, and drillers' logs and previously published reports and maps. Six test holes (figure 1) were drilled to supplement available data. The information in this report will be useful for water-resources planning and for locating water-supply wells in the unconfined aquifer.

OFR7 Review of the Subsurface Geology and Resource Potential of Southern Delaware

OFR7 Review of the Subsurface Geology and Resource Potential of Southern Delaware

This review summarizes the present knowledge of the subsurface geology and resource potential of southern Delaware and outlines the needs for future studies to gain further understanding of these matters. Because of the present interest in exploring for oil and gas beneath the Atlantic Outer Continental Shelf it is most timely that the primary resource considered in this report be the hydrocarbon (petroleum and natural gas) potential of the State. Hydrocarbons occur in commercial quantities only in thick sections of sedimentary rock, therefore, southern Delaware (primarily Sussex County) is the focus of this study because the thickest sedimentary rock section in the State is here. Assessment of the hydrocarbon potential of this area also has bearing on other resources such as groundwater (both fresh water and subsurface brines), underground storage of natural gas, and underground waste disposal.

OFR48 Results of the Domestic Well Water-Quality Study

OFR48 Results of the Domestic Well Water-Quality Study

The Delaware Geological Survey conducted a review of existing ground-water quality data collected from shallow (less than 100 feet deep) domestic water-supply wells and small public water-supply wells (serving fewer than 100 residents) to determine the extent to which toxic and carcinogenic compounds are present in the shallow ground water serving domestic water supply wells. These data were generated by several agencies including the Delaware Geological Survey, U.S. Geological Survey, Delaware Department of Natural Resources and Environmental Control, Delaware Division of Public Health Office of Drinking Water, and the Delaware Department of Agriculture Pesticide Management Program.

OFR41 Beach Sand Textures from the Atlantic Coast of Delaware

OFR41 Beach Sand Textures from the Atlantic Coast of Delaware

The purpose of this report is to characterize Delaware Atlantic Coast beach sand on the basis of sand texture data in order to identify geologic material suitable for beach nourishment.

This page tagged with:

RI38 Hydrology of the Manokin, Ocean City, and Pocomoke Aquifers of Southeastern Delaware

RI38 Hydrology of the Manokin, Ocean City, and Pocomoke Aquifers of Southeastern Delaware

Population and accompanying water use are expected to increase by 34 percent in southeastern Delaware between 1975 and 2000. To assess the capability of the aquifers in that area to supply the required amount of ground water, a study of those aquifers was started in 1976. Interpretation of geologic sections developed from drilling and geophysical data showed that the confining beds between the Manokin, Ocean City, and Pocomoke aquifers of Neogene age are thin and discontinuous in some parts of the area. Possible fault zones coinciding with deep tectonic features may also contribute to interconnection of these aquifers. Hydrographs of water levels in the aquifers show differential drawdown during periods of heavy pumping, but levels return to a common altitude during unstressed periods. Because of these characteristics, the Manokin, Ocean City, and Pocomoke aquifers are considered to be a single confined aquifer, in most places.

RI36 History of Oil and Gas Exploration in the Mid-Atlantic Region and Delaware's Involvement in the Federal OCS Leasing Program

RI36 History of Oil and Gas Exploration in the Mid-Atlantic Region and Delaware's Involvement in the Federal OCS Leasing Program

There has been sporadic exploration for oil and gas in the Mid-Atlantic region for over 50 years. Non-commercial deposits of oil and gas have recently been discovered in the sedimentary rock section of the Outer Continental Shelf (OCS) 80 miles off the New Jersey-Delaware coast. The oil and gas occurs within entrapment structures in ancient rocks deposited and buried in a deep basin called the Baltimore Canyon trough. This trough forms part of the Coastal Plain and continental shelf geologic provinces on the Atlantic Coast.

OFR36 Summary Report: The Storm of January 4, 1992

OFR36 Summary Report: The Storm of January 4, 1992

On January 4, 1992 an intense storm moved from the east across the Delmarva Peninsula and the Chesapeake Bay. Its track was the result of the low pressure being pulled westward by a strong cold-cored upper low moving across Georgia and South Carolina. The storm exhibited tropical/subtropical characteristics on radar. Satellite photos indicate that an "eye" to the storm formed just prior to landfall. Landfall occurred over the southern Delmarva Peninsula just prior to the time of high tide (0648 at Ocean City, Md). The storm weakened rapidly as it moved over land areas with a secondary area redeveloping farther out to sea later in the day on the 4th. Approximate locations of the storm's track are given on Figure 1. As the storm moved across the Delmarva Peninsula perpendicular to the coast, Delaware was in the right-foreward quadrant to the north of the "eye" of the storm. This position typically produces the highest winds associated with a tropical storm. These winds created high waves that in conjunction with an astronomical high tide (new moon) produced strong surf and abnormally high tides along the shore. Rainfall from the storm in Delaware was not heavy enough to cause flooding of streams. Coastal flooding of marshes and low-lying areas did occur along the Inland Bays and along Delaware Bay.

This page tagged with:

OFR33 Ground-Water Level and Chemistry Data from the Coastal Sussex County, Delaware, Ground-Water Quality Survey

OFR33 Ground-Water Level and Chemistry Data from the Coastal Sussex County, Delaware, Ground-Water Quality Survey

This report contains the supporting ground-water level and chemistry data and the data collection methodology for Delaware Geological Survey Report of Investigations No. 49, "Results of the Coastal Sussex County, Delaware, Ground-Water Quality Survey" (Andres, 1991). Because raw data are commonly requested, they are published here in open-file format to accommodate those needing it for further analysis.

This page tagged with:

B15 Digital Model of the Unconfined Aquifer in Central and Southeastern Delaware

B15 Digital Model of the Unconfined Aquifer in Central and Southeastern Delaware

The unconfined aquifer in central and southeastern Delaware occurs as a southward-thickening blanket of fine to coarse sand, and is recharged almost totally by precipitation and discharge is principally by seepage to streams, bays, and the ocean.

B8 Water Resources of Sussex County, Delaware

B8 Water Resources of Sussex County, Delaware

Sussex County is in the Atlantic Coastal Plain. Its relatively flat, featureless topography is characterized by two terrace-like surfaces; the lower one rises from sea level to about 40 feet above sea level, and the higher one rises inland from 40 to about 60 feet above sea level. Peculiar landforms of low relief, broad ovals, similar to the "Carolina bays," and to the "New Jersey basins" are common on the sandy flat divides in Sussex County. Hydrologically, they are sites of much ground-water discharge, by evapotranspiration, from meadow and marsh of lush vegetation.

Delaware Offshore Geologic Inventory

Delaware Offshore Geologic Inventory Map
Project Contact(s):

Since 1992, the Delaware Geological Survey (DGS) has compiled a geologic database known as the Delaware Offshore Geologic Inventory (DOGI) that consists of sediment samples, radiocarbon and amino acid racemization dates, seismic profiles, and vibracores taken from the nearshore and inner continental shelf in state and federal waters. Most of the 366 vibracores are stored at the DGS on-site core and sample repository.

Coastal Plain Rock Units (Stratigraphic Chart)

The geology of Delaware includes parts of two geologic provinces: the Appalachian Piedmont Province and the Atlantic Coastal Plain Province. The Piedmont occurs in the hilly northernmost part of the state and is composed of crystalline metamorphic and igneous rocks. This chart summarizes the age and distribution of the geologic units that are recognized in the state by the Delaware Geological Survey.

RI23 Cretaceous and Tertiary Section, Deep Test Well, Greenwood, Delaware

RI23 Cretaceous and Tertiary Section, Deep Test Well, Greenwood, Delaware

Analyses of drillers' and geophysical logs, cuttings, and 29 core samples from well Nc13-3 near Greenwood, Sussex County, Delaware indicate that the 1500-foot section penetrated by the drill can be divided into seven rock-stratigraphic units: Matawan Formation, Monmouth Formation, unit A, Piney Point Formation, Chesapeake Group (undifferentiated), Staytonville unit, and the Columbia Formation. The rock units are identified on the basis of texture, mineralogy, color, and interpretation of electric and gamma-ray logs. The oldest rocks penetrated are Upper Cretaceous; Tertiary and Quaternary rocks were also encountered. Correlations of the units encountered in the Greenwood test well with subsurface formations in adjacent parts of the Coastal Plain are explored utilizing lithologies, ages, positions in the stratigraphic column, and geophysical characteristics as criteria. Major time boundaries (Cretaceous-Tertiary; Early-Late Paleocene; Paleocene-Eocene; and Eocene-Miocene) are established by a preliminary study of mainly planktonic foraminifera. The Miocene-Pleistocene boundary was determined on changes in lithology across the unconformable contact.

RI17 Ground-Water Geology of the Delaware Atlantic Seashore

RI17 Ground-Water Geology of the Delaware Atlantic Seashore

The need for locating additional sources of ground water for the Delaware Atlantic seashore, a predominantly recreation-oriented area, is indicated by an expanding population in the belt between Philadelphia, Pennsylvania and Washington, D.C., combined with increasing leisure time. Present water use in the shore area is approximately 4 million gallons per day and will reach 9.3 million gallons per day by the year 2000. A new geologic interpretation of the occurrence of deep aquifers in the Delaware Atlantic seashore area is presented. Recent data from deep wells has enabled the construction of a more accurate geologic framework upon which the hydrologic data are superimposed. Correlation of Miocene sands concludes that the Manokin aquifer lies at greater depths in southeastern Delaware than previously thought.