Share

DGS Annual Report

DGS Annual Report of Programs and Activities.

Click here to download!

Site content related to keyword: "Sussex County"

Delaware Geological Survey Issues Report on Groundwater Monitoring and Water-Quality Impacts of Rapid Infiltration Basin Systems

The Delaware Geological Survey released a new technical report entitled “Groundwater Quality and Monitoring of Rapid Infiltration Basin Systems, Theory and Field Experiments at Cape Henlopen State Park, Delaware” which was prepared by A. Scott Andres and Changming He of the Delaware Geological Survey, Edward Walther of the South Water Management District, Florida, Müserref Türkmen of the Izmir Water and Sewerage Administration, Turkey, and Anastasia Chirnside and William Ritter of the University of Delaware. DGS Bulletin 21C documents the results of a detailed study of groundwater quality at a rapid infiltration basin system.

B21C Groundwater Quality and Monitoring of Rapid Infiltration Basin Systems (RIBS), Theory and Field Experiments at Cape Henlopen State Park, Delaware

B21C Groundwater Quality and Monitoring of Rapid Infiltration Basin Systems (RIBS), Theory and Field Experiments at Cape Henlopen State Park, Delaware

A rapid infiltration basin system (RIBS) consists of several simple and relatively standard technologies; collection and conveyance of wastewater, treatment, and discharge to an unlined excavated or constructed basin. By design, the effluent quickly infiltrates through the unsaturated or vadose zone to the water table. During infiltration, some contaminants may be treated by biological and/or geochemical processes and diluted by dispersion and diffusion. The combination of contaminant attenuation and dilution processes that may occur during infiltration and flow through the aquifer are termed soil-aquifer-treatment, or SAT. In the past decade, RIBS have been proposed more frequently for use in Delaware because they stop the direct discharge of treated effluent to surface water, can accommodate significant flow volumes typical of residential subdivisions, yet require much less land than options such as spray irrigation or sub-surface disposal systems.

Decades of research on the shallow Columbia aquifer of the Delmarva Peninsula have clearly identified the high susceptibility of the aquifer from land- and water-use practices, and the processes that control the fate and transport of contaminants from their origin at or near land surface to points of discharge in creeks, estuaries, and wells. The risk of aquifer contamination is great because it is highly permeable, has little organic matter in the aquifer matrix, and the depth to groundwater is very commonly less than 10 ft below land surface. USEPA guidance documents and several engineering texts that cover RIBS design clearly identify these same factors as increasing risk for groundwater contamination but do not provide much information on means to monitor and mitigate those risks. Further, design criteria are based on a small group of experiments conducted in the 1970s prior to development of current understanding of the processes that control groundwater contaminant transport.

Field and laboratory experiments to characterize the physical, chemical, and biological controls and processes associated with the rapid infiltration of treated sewage effluent through infiltration beds and the vadose zone were undertaken at a RIBS located at Cape Henlopen State Park (CHSP), Delaware. Field experiments to understand the geochemical effects of the long-term operation of a RIBS on ground and surface waters, and to evaluate monitoring systems were also conducted at the site. The CHSP RIBS has been in operation since the early 1980s.

Significant concentrations of nitrogen and phosphorus occur in groundwater from the point of effluent entry at the water table to distances greater than 150 ft from the infiltration beds. The high hydraulic, nitrogen (N), phosporus (P), and organic loading rates associated with the operation of RIBS overwhelm natural attenuation (e.g., sorption and precipitation) processes. Data are not sufficient to indicate whether denitrification is occurring. If there is denitrification, the rate is insufficient to remediate RIBS effluent at the site — despite a 25-ft thick vadose zone, an effluent with enough organic carbon to facilitate anaerobic conditions that permit abiotic denitrification and feed microorganism-driven denitrification processes, and hypoxic to anoxic groundwater.

Significant horizontal and vertical variability of contaminant concentrations were observed within the portion of the aquifer most impacted by effluent disposal. Despite the relatively small spatial extent of the disposal area in our study area, identification of the preferential flow zone and characterization of the vertical and temporal variability in the concentrations of contaminants required a multi-phase subsurface investigation program that included an analysis of data from samples collected at bi-monthly intervals from dozens of monitoring points and high frequency temperature monitoring in several wells. A well-designed monitoring system should be based on experimentally determined site specific evidence collected under conditions that duplicate the flow rates that are expected during full-scale operation of the RIBS. Conservative tracers should be used to determine if the monitoring wells are in locations that intercept flow from the infiltration beds.

B21B Hydrogeology of a Rapid Infiltration Basin System (RIBS) at Cape Henlopen State Park, Delaware

B21B Hydrogeology of a Rapid Infiltration Basin System (RIBS) at Cape Henlopen State Park, Delaware

The hydrogeologic framework of Cape Henlopen State Park (CHSP), Delaware was characterized to document the hydrologic effects of treated wastewater disposal on a rapid infiltration basin system (RIBS). Characterization efforts included installation of test borings and monitoring wells; collection of core samples, geophysical logs, hydraulic test data, groundwater levels and temperatures; testing of grain size distribution; and interpretation of stratigraphic lithofacies, hydraulic test data, groundwater levels, and temperature data. This work was part of a larger effort to assess the potential benefits and risks of using RIBS in Delaware.

The infiltration basins at CHSP are constructed on the Great Dune, an aeolian dune feature composed of relatively uniform, medium-grained quartz sand. The age of the dune, determined by carbon-14 dating of woody material in swamp deposits under the dune, is less than 800 years. Underlying the dune deposits are relatively heterogeneous, areally continuous, coarse-grained spit deposits of the proto-Cape Henlopen spit with interbedded and relatively fine-grained, discontinuous swamp and marsh deposits, and beneath, relatively fine-grained, continuous, near-shore marine deposits. The dune deposits can be 45 ft thick under the crest of the dune and nonexistent at the surface. Spit deposits range from 5 to 15 ft thick. Test drilling determined that the near-shore marine deposits are at least 10 ft thick in the vicinity of the infiltration basins. The complete thickness of these deposits was not determined in this study.

Hydraulic testing and grain-size data indicate that the dune and spit deposits are relatively permeable, with average hydraulic conductivities of 140 ft/day and that the swamp and marsh deposits are more than one order of magnitude less permeable, with average hydraulic conductivity of 25 to 10 ft/day. The water-table aquifer is present in the sandier dune and spit deposits. The swamp, marsh, and near-shore marine deposits form a leaky confining unit. The water-table aquifer is 15 to 20 ft thick under the thickest section of the Great Dune and nonexistent where the dune deposits are absent. The vadose zone is greater than 25 ft thick under the infiltration basins.

High-frequency groundwater level and temperature monitoring during periods of maximum wastewater disposal rates indicates that wastewater disposal causes increases in water-table elevations on the order of 1 ft. Groundwater elevations indicate that the water-table elevation is greatest under the infiltration basins and that most flow is directed southward toward a swampy discharge area.

Maximum disposal rates typically occur in summer months when the numbers of park users and water use are greatest. Coincident with greater disposal rates are higher wastewater temperatures. These higher wastewater temperatures are observed in groundwater and provide a means to track the flow of water from beneath the infiltration beds towards a nearby discharge area. Tracking of the warmer groundwater and modeling two-dimensional particle tracking both indicate that wastewater discharged to the infiltration basins reaches the nearby discharge area within 180 days.

Delaware Geological Survey issues report on groundwater modeling in eastern Sussex County

The Delaware Geological Survey (DGS) has released a new technical report titled Simulation of Groundwater Flow and Contaminant Transport in Eastern Sussex County, Delaware with Emphasis on Impacts of Spray Irrigation of Treated Wastewater, which was prepared by Changming He and A. Scott Andres of DGS.

DGS Report of Investigations No. 79 documents development of a detailed study of subsurface hydrogeology, interactions between aquifers and streams, and the effects of spray irrigation of treated wastewater on groundwater beneath southern eastern Sussex County.

GM23 Geologic Map of the Seaford West and Seaford East Quadrangles, Delaware

GM23 Geologic Map of the Seaford West and Seaford East Quadrangles, Delaware

The geological history of the surficial units of the Seaford East Quadrangle and the Delaware portion of the Seaford West Quadrangle was the result of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the middle and late Pleistocene deposits incised into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and the Carolina Bays in the map area, which modified the land surface.

RI79 Simulation of Groundwater Flow and Contaminant Transport in Eastern Sussex County, Delaware With Emphasis on Impacts of Spray Irrigation of Treated Wastewater

Simulation of Groundwater Flow and Contaminant Transport in Eastern Sussex County, Delaware With Emphasis on Impacts of Spray Irrigation of Treated Wastewater

This report presents a conceptual model of groundwater flow and the effects of nitrate (NO3-) loading and transport on shallow groundwater quality in a portion of the Indian River watershed, eastern Sussex County, Delaware. Three-dimensional, numerical simulations of groundwater flow, particle tracking, and contaminant transport were constructed and tested against data collected in previous hydrogeological and water-quality studies.

The simulations show a bimodal distribution of groundwater residence time in the study area, with the largest grouping at less than 10 years, the second largest grouping at more than 100 years, and a median of approximately 29 years.

Historically, the principal source of nitrate to the shallow groundwater in the study area has been from the chemical- and manure-based fertilizers used in agriculture. A total mass of NO3- -nitrogen (N) of about 169 kg/day is currently simulated to discharge to surface water. As the result of improved N-management practices, after 45 years a 20 percent decrease in the mass of NO3- -N reaching the water table would result in an approximately 4 percent decrease in the mass of simulated N discharge to streams. The disproportionally smaller decrease in N discharge reflects the large mass of N in the aquifer coupled with long groundwater residence times.

Currently, there are two large wastewater spray irrigation facilities located in the study domain: the Mountaire Wastewater Treatment Facility and Inland Bays Wastewater Facility. The effects of wastewater application through spray irrigation were simulated with a two-step process. First, under different operations and soil conditions, evaporation and water flux, NO3- -N uptake by plants, and NO3- -N leaching were simulated using an unsaturated flow model, Hydrus-1D. Next, the range of simulated NO3- -N loads were input into the flow and transport model to study the impacts on groundwater elevation and NO3- -N conditions.

Over the long term, the spray irrigation of wastewater may increase water-table elevations up to 2.5m and impact large volumes of groundwater with NO3-. Reducing the concentration of NO3- in effluent and increasing the irrigation rate may reduce the volumes of water impacted by high concentrations of NO3-, but may facilitate the lateral and vertical migration of NO3-. Simulations indicate that NO3- will eventually impact deeper aquifers. An optimal practice of wastewater irrigation can be achieved by adjusting irrigation rate and effluent concentration. Further work is needed to determine these optimum application rates and concentrations.

Drought Conditions Indicators for Delaware

Summary of Water Conditions for Delaware website screen shot for March 2015

The DGS will research past performance of the Water Conditions Index (WCI) for Northern New Castle County, as compared with other established drought indicators, and investigate modifying the WCI, if needed. We will also investigate the feasibility of quantifying water conditions in Kent and Sussex Counties by analyzing factors that are most important to these regions (i.e., precipitation, groundwater for agricultural irrigation, etc….)

Analysis of Storm Surge and Tidal Data Relationships in the Delaware Inland Bays based on Meteorological Conditions

Fenwick Island Flooding due to Hurricane Sandy (AP Photo/Randall Chase)
Project Contact(s):

This project will study the water level behavior throughout the Delaware Inland Bays, with a focus on populated areas, during times of both storm and non-storm events through analysis of observational data from tide gages. It will also support the inclusion of the Delaware Inland Bays into the Delaware CFMS by developing a statistical relationships between the water levels along the Atlantic Ocean coast near the mouth of the Inland B

New Instrumentation for Water Budget Evaluation

Eddy Covariance Instrumentation
Project Contact(s):

The Delaware Environmental Observation System (DEOS) and the Delaware Geological Survey have acquired and installed new instrumentation to measure evapotranspiration (ET). The eddy covariance (EC) instrument system, purchased with support from the Department of Natural Resources and Environmental Control, will improve the ability to quantify ET during agricultural and water supply drought periods and improve water availability estimates for resource managers.

OFR50 Database of Quaternary Coastal Geochronologic Information for the Atlantic and Pacific Coasts of North America (additional information for sites in Peru and Chile)

OFR50 Database of Quaternary Coastal Geochronologic Information for the Atlantic and Pacific Coasts of North America

Open-File Report 50 presents and describes a database of geochronological information for coastal deposits of the US Atlantic and Pacific coasts, as well as for sites from the Pacific coast of South America. This database represents a synthesis of nearly forty years of study conducted by John F. Wehmiller and students in the Department of Geological Sciences, University of Delaware, as well as many collaborating colleagues. The majority of the chronological information in the database is based on amino acid racemization (AAR) data for fossil mollusks obtained from over 1000 collection sites. These chronological data have been used for various mapping, paleoenvironmental, stratigraphic, sea-level, and tectonic studies. In addition to the database itself, 18 on-line supplements containing information related to sample descriptions, sample and collection site photographs, field notes, supporting or related analytical data, and laboratory publications and technical reports are available. Periodic updates and additions will be made where appropriate. The database will be updated regularly to add new data or to complete entries that are currently blank. The instructions provided with the database indicate the date of the latest revision, as well as all revisions after the first release. Some output data from the Amino Acid Racemization Data Base (AARDB) are available at on-line mapping sites or are posted to the NOAA-World Data Center for archival preservation (http://www.ncdc.noaa.gov/paleo/aar.html). The Journal copy of this report is available through Elsevier at http://authors.elsevier.com/sd/article/S2214242815000170.

Amino Acid Racemization Data Base (AARDB)

Amino Acid Racemization Data  Base (AARDB)

Open-File Report 50 presents and describes a database of geochronological information for coastal deposits of the US Atlantic and Pacific coasts, as well as for sites from the Pacific coast of South America. This database represents a synthesis of nearly forty years of study conducted by John F. Wehmiller and students in the Department of Geological Sciences, University of Delaware, as well as many collaborating colleagues. The majority of the chronological information in the database is based on amino acid racemization (AAR) data for fossil mollusks obtained from over 1000 collection sites. These chronological data have been used for various mapping, paleoenvironmental, stratigraphic, sea-level, and tectonic studies. In addition to the database itself, 18 on-line supplements containing information related to sample descriptions, sample and collection site photographs, field notes, supporting or related analytical data, and laboratory publications and technical reports are available. Periodic updates and additions will be made where appropriate. The database will be updated regularly to add new data or to complete entries that are currently blank. The instructions provided with the database indicate the date of the latest revision, as well as all revisions after the first release. Some output data from the Amino Acid Racemization Data Base (AARDB) are available at on-line mapping sites or are posted to the NOAA-World Data Center for archival preservation (http://www.ncdc.noaa.gov/paleo/aar.html).

Milford (Q61A) Seismic Station

The seismic instruments located at the Milford, DE location were adopted by DGS from the Earthscope Transportable Array, which consists of a network of 400 high-quality, portable broadband seismometers that are being placed in temporary sites across the United States. DGS adopted two of these Earthscope stations, P60A in Greenville, DE and Q61A in Milford, DE. This program provided an outstanding opportunity for Delaware to enhance its seismic monitoring capabilities in the future, and upgrade current antiquated equipment.

DGS Geologic Map No. 22 (Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware) Dataset

DGS Geologic Map No. 22 (Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 22 (Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware). The geological history of the surficial geologic units in western Sussex County is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface.

GM22 Geologic Map of the Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware

GM22 Geologic map of the Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware

The geological history of the surficial geologic units in western Sussex County is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface. Mapping was conducted using field maps at a scale of 1:12,000 with 2-ft contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map.

Data and Graphs of Water Level Summaries for Wells with 20+ Years or 100+ Observations

Example Hydrograph for DB24-18 - Water Level Summaries for Wells with 20+ Years or 100+ Observations

Ground-water levels are basic information needed for evaluating water conditions and for basic and applied research. For these efforts, water levels are being measured statewide in wells completed in multiple aquifers. Some wells are measured for specific projects, such as the Coastal Aquifers Salinity Project and the Water Conditions program, while other wells are measured so that staff can maintain long term records of ground-water levels for evaluation of trends. Table contains summary data from wells having 100 or more water level observations.

Delaware Geological Survey releases new geologic map of the Trap Pond area

The Delaware Geological Survey (DGS) has published a new geologic map of the Trap Pond and Pittsville areas in central Sussex County titled Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware.

DGS Geologic Map No. 21 (Trap Pond and Pittsville Quadrangles, Delaware) Dataset

DGS Geologic Map No. 21 (Trap Pond and Pittsville Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 21 (Trap Pond and Pittsville Quadrangles, Delaware). The geological history of the surficial units of the Trap Pond and the Delaware portion of the Pittsville Quadrangle was the result of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the Middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2-foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map.

GM21 Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware

GM21 Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware

The geological history of the surficial units of the Trap Pond and the Delaware portion of the Pittsville Quadrangle was the result of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the Middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2-foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map.

Delaware Geological Survey releases geologic map of Frankford, Selbyville area

The Delaware Geological Survey (DGS) has published a new geologic map of the Frankford and Selbyville area in eastern Sussex County titled Geologic Map of the Frankford and Selbyville Quadrangles, Delaware.

This page tagged with:

Elevation Contours Dataset for Delaware

Elevation Contours Dataset for Delaware

Elevation contours at 2 foot intervals for the State of Delaware were produced for New Castle and Kent Counties based on the 2007 LIDAR) and for Sussex County (based on the 2005 LIDAR.) Data are in line shapefile format.