Share

DGS Annual Report

DGS Annual Report of Programs and Activities.

Click here to download!

Site content related to keyword: "New Jersey"

B21D Using Numerical Models to Assess a Rapid Infiltration Basin System (RIBS), Cape Henlopen State Park, Delaware

B21D Using Numerical Models to Assess a Rapid Infiltration Basin System (Ribs), Cape Henlopen State Park, Delaware

The long-term performance of rapid infiltration basin systems (RIBS) and their potential impacts on the receiving environment have been previously unknown for Delaware. A variety of field experiments were conducted to characterize the geology and hydrogeology of a RIBS facility that has been in operation for more than 20 years at Cape Henlopen State Park. Pairs of standard monitoring wells and short-screened multi-level wells were used to evaluate the significance of small-scale vertical variability in water quality. A three-dimensional transient groundwater flow and contaminant transport model was constructed to simulate the groundwater mounding and the movements of nitrate-nitrogen (NO3--N) and orthophosphorus (OP) in the groundwater. In the numerical model, NO3--N was treated as a reactive species and denitrification was simulated with a first-order degradation rate constant. The major mechanism affecting OP transport in groundwater is sorption/desorption, which was simulated using a linear sorption isotherm. Simulated concentrations reasonably fit observed concentrations of NO3--N and OP in both standard wells and multi-level wells. The calibrated model predicts that with a denitrification rate of 0.006/day and a distribution coefficient of 4×10-7 L/mg, 63 percent of the reduction in the mass of NO3--N is attributable to denitrification, and more than 99 percent of OP is detained in the aquifer due to sorption on subsurface solids. However, the long-term operation of RIBS has led to a reduction of the sorption capacity of subsurface solids for phosphorous, resulting in significant concentrations of OP in groundwater adjacent to RIBS.

Delaware Geological Survey Issues Report on Wastewater Treatment used for Rapid Infiltration Basin Systems

The Delaware Geological Survey released a new technical report entitled “Evaluation Of Wastewater Treatment Options Used In Rapid Infiltration Basin Systems (RIBS)” which was prepared by Müserref Türkmen of the Izmir Water and Sewearge Administration, Turkey, A. Scott Andres of the Delaware Geological Survey, Edward Walther of the South Water Management District, Florida, and William Ritter and Anastasia Chirnside of the University’s College of Agriculture and Natural Resources. DGS Bulletin 21A documents the results of a detailed study of wastewater treatment plant technologies and effectiveness of treatment types that are used to treat wastewater prior to disposal into the ground by rapid infiltration basin systems.

B21A Evaluation of Wastewater Treatment Options Used in Rapid Infiltration Basin Systems (RIBS)

This technical report evaluates several aspects of potential environmental risks, use, and regulation of rapid infiltration basin systems (RIBS) in Delaware. The report reviews and compares regulations regarding RIBS from Delaware, Florida,North Carolina, New Jersey, Maryland, and Massachusetts. Influent and effluent samples from ten advanced wastewater treatment systems that operate in conjunction with RIBS were collected and analyzed. Effluent data obtained from the Non-Hazardous Waste Sites database provided by the Delaware Department of Natural Resources and Environmental Control and other states were assessed. Performance evaluations of the treatment processes that discharge to RIBS were ascertained from the exceedance of concentrations of regulated pollutants in effluent samples.

Although RIBS technology has the potential to be a beneficial alternative to surface discharge and a means for groundwater recharge, this technology is appropriate only if the adverse environmental impacts are minimized. Overall operation and maintenance practices play important roles in the performance of treatment plants. The most common and serious problems associated with treatment plants located in Delaware and neighboring states are high nutrient and pathogen concentrations in the effluent. In Delaware, the discharge of poorly treated effluent to RIBS creates a risk of nutrient and pathogen contamination in the receiving water body, the shallow Columbia aquifer. Years of application of treated effluent with high nutrient, pathogen, and organic content to RIBS will result in significant risks for the environment and public health.

Presentations at GSA (Geological Society of America) 2012 Annual Meeting

David Wunsch, director of the Delaware Geological Survey and state geologist, and Peter McLaughlin, senior scientist with the Delaware Geological Survey, attended the annual meeting of Geological Society of America in Charlotte, N.C., Nov. 4-7.

B9 Stratigraphy of the Sedimentary Rocks of Delaware

B9 Stratigraphy of the Sedimentary Rocks of Delaware

The stratigraphy of the Coastal Plain of Delaware is discussed with emphasis placed upon an appraisal of the stratigraphic nomenclature. A revised stratigraphic column for Delaware is proposed. Rock stratigraphic units, based mainly on data from certain key wells, are described and the published names which have been or which might conceivably be applied to those units are reviewed. In each case a name is chosen and the reasons for the choice are stated. The relationships between the column established for Delaware and the recognized columns for adjacent states are considered. The rock units of the Coastal Plain of New Jersey, Delaware, and Maryland form an interrelated mass. However, profound facies changes do occur, particularly in the dip direction, but also along the strike. Thus, attempts to extend units established in the outcrop belt almost indefinitely into the subsurface have been unsatisfactory.

RI71 Internal Stratigraphic Correlation of the Subsurface Potomac Formation, New Castle County, Delaware, and Adjacent Areas in Maryland and New Jersey

RI71 Internal Stratigraphic Correlation of the Subsurface Potomac Formation, New Castle County, Delaware, and Adjacent Areas in Maryland and New Jersey

This report presents a new time-stratigraphic framework for the subsurface Potomac Formation of New Castle County, Delaware, part of adjacent Cecil County, Maryland, and nearby tie-in boreholes in New Jersey. The framework is based on a geophysical well-log correlation datum that approximates the contact between Upper and Lower Cretaceous sediments. This datum is constrained by age determinations based on published and unpublished results of studies of fossil pollen and spores in samples of sediment cores from boreholes in the study area. Geophysical log correlation lines established above and below the datum approximate additional chronostratigraphic surfaces. The time-stratigraphic units thus defined are not correlated parallel to the basement unconformity, as in previous practice, but instead onlap it in an updip direction. In future studies, the sedimentary facies of the Potomac Formation within each time-stratigraphic layer may be mapped and analyzed as genetically related contemporaneous units. This new stratigraphic framework will allow better delineation of the degree of lateral connection between potential aquifer sands, thus enhancing understanding of aquifer architecture.

OFR42 Catalog of Earthquakes in Delaware

OFR42 Catalog of Earthquakes in Delaware

The occurrences of earthquakes in northern Delaware and adjacent areas of Pennsylvania, Maryland, and New Jersey are well documented by both historical and instrumental records. Over 550 earthquakes have been documented within 150 miles of Delaware since 1677. One of the earliest known events occurred in 1737 and was felt in Philadelphia and surrounding areas. The largest known event in Delaware occurred in the Wilmington area in 1871 with an intensity of VII (Modified Mercalli Scale). The second largest event occurred in the Delaware area in 1973 (magnitude 3.8 and maximum Modified Mercalli Intensity of V-VI). The epicenter for this event was placed in or near the Delaware River. Sixty-nine earthquakes have been documented or suspected in Delaware since 1871.

OFR4 Papers Presented by Staff Members of the Delaware Geological Survey at the Baltimore Meeting of the Northeastern Section of the Geological Society of America, March, 1974

OFR4 Papers Presented by Staff Members of the Delaware Geological Survey at the Baltimore Meeting of the Northeastern Section of the Geological Society of America, March, 1974

This report is a compilation of four papers presented by DGS staff members at the Baltimore Meeting of the Northeastern Section of the Geological Society of America, March, 1974.

B3 Marine Upper Cretaceous Formations of the Chesapeake and Delaware Canal

B3 Marine Upper Cretaceous Formations of the Chesapeake and Delaware Canal

In the Coastal Plain of Delaware, the non-marine Cretaceous sands and clays are separated from the Tertiary formations by a series of marine formations of Upper Cretaceous age. The sedimentary and hydrologic characteristics of these formations deserve detailed study because some of them are water-bearing beds. whereas others act as confining beds. A clear understanding of their relative age. and the presence or absence of unconformities is needed for proper correlation with formations found in wells throughout the State. as well as in Maryland and New Jersey.

Earthquake rattles New Jersey and Delaware

Earthquake reported July 1 (credit NBC News 10)

A minor earthquake occurred near Pennsville, N.J., at 9:44 a.m., Wednesday, July 1, according to the Delaware Geological Survey (DGS) at the University of Delaware. The earthquake, which had a magnitude of 2.8, was recorded at the three northern stations of the DGS seismic network.

Earth's shift rattles state, some nerves - Centered in N.J., quake sounded like a loud noise

Delaware Geological Survey geologist, Stefanie Baxter shows the seismic recordings from detectors Wednesday.

When the earthquake hit a little before 10 a.m., everyone who heard the crack and felt the ground rumble thought something had exploded or crashed. Chimneys fell over, windows shattered, people panicked -- on Oct. 9, 1871. The magnitude 4.1 earthquake that shook Wilmington that morning -- the most intense temblor ever recorded in Delaware -- easily outshook the magnitude 2.8 quake that hit the state Wednesday morning.

Overview of Earthquakes in Delaware

DGS Seismic Recorder

Earthquakes occur in northern Delaware and adjacent areas of Pennsylvania, Maryland, and New Jersey. Over 550 earthquakes have been documented within 150 miles of Delaware since 1677, and 69 earthquakes have been documented or suspected in Delaware since 1871.