Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Delaware"

Earthquake Felt Report

Please answer every question to the best of your ability. Either fill in the blanks where called for, or check the response that best describes the event. If a question does not apply or if you don't know how to respond to a particular question, simply skip it and go on to the next. Feel free to add additional information in the Additional Comments box at the bottom of the form.

RI72 Geology and Extent of the Confined Aquifers of Kent County, Delaware

RI72 Geology and Extent of the Confined Aquifers of Kent County, Delaware

Ground water comprises nearly all of the water supply in Kent County, Delaware. The confined aquifers of the area are an important part of this resource base. The aim of this study is to provide an up-to-date geologic framework for the confined aquifers of Kent County, with a focus on their stratigraphy and correlation. Seven confined aquifers are used for water supply in Kent County. All occur at progressively greater depths south-southeastward, paralleling the overall dip of the sedimentary section that underlies the state. The two geologically oldest, the Mount Laurel and Rancocas aquifers, are normally reached by drilling only in the northern part of the county. The Mount Laurel aquifer is an Upper Cretaceous marine shelf deposit composed of clean quartz sands that are commonly glauconitic. It occurs at around 300 ft below sea level in the Smyrna Clayton area and is typically just less than 100 ft thick. Southward, toward Dover, it passes into fine-grained facies that do not yield significant ground water. The Rancocas aquifer is a Paleocene to Eocene marine unit of shelf deposits consisting of glauconite-rich sands with shells and hard layers. It occurs as high as 100 ft below sea level in northwestern Kent County and deepens southeastward, rapidly changing facies to finer-grained, nonaquifer lithologies in the same direction.

Number of Pages: 
46

RI71 Internal Stratigraphic Correlation of the Subsurface Potomac Formation, New Castle County, Delaware, and Adjacent Areas in Maryland and New Jersey

RI71 Internal Stratigraphic Correlation of the Subsurface Potomac Formation, New Castle County, Delaware, and Adjacent Areas in Maryland and New Jersey

This report presents a new time-stratigraphic framework for the subsurface Potomac Formation of New Castle County, Delaware, part of adjacent Cecil County, Maryland, and nearby tie-in boreholes in New Jersey. The framework is based on a geophysical well-log correlation datum that approximates the contact between Upper and Lower Cretaceous sediments. This datum is constrained by age determinations based on published and unpublished results of studies of fossil pollen and spores in samples of sediment cores from boreholes in the study area. Geophysical log correlation lines established above and below the datum approximate additional chronostratigraphic surfaces. The time-stratigraphic units thus defined are not correlated parallel to the basement unconformity, as in previous practice, but instead onlap it in an updip direction. In future studies, the sedimentary facies of the Potomac Formation within each time-stratigraphic layer may be mapped and analyzed as genetically related contemporaneous units. This new stratigraphic framework will allow better delineation of the degree of lateral connection between potential aquifer sands, thus enhancing understanding of aquifer architecture.

Number of Pages: 
20

RI69 Geology of The Old College Formation Along the Fall Zone of Delaware

RI69 Geology of The Old College Formation Along the Fall Zone of Delaware

This publication formally establishes the Old College Formation, a lithostratigraphic unit located along the Fall Zone of Delaware. It is named for sediments encountered in numerous drill holes on, and adjacent to, the Old College campus of the University of Delaware in Newark, Delaware. The Old College Formation consists of micaceous, brown to reddish-brown, fine to coarse sand with scattered gravelly sand overlain by sandy silt beds. The Old College Formation has a distinctive suite of abundant heavy minerals including sillimanite, staurolite, and magnetite. Provenance of the sand is local, derived from erosion of Piedmont rocks along and just to the west of the Fall Zone. The unit is the result of alluvial fan deposition on a pediment-like surface extending from the Fall Zone to the adjacent Coastal Plain. The Old College Formation is a surficial unit that overlies Piedmont saprolite, the Cretaceous Potomac Formation, and the Pleistocene Columbia Formation. No fossil data are available for the unit. Stratigraphic and geomorphic positions indicate that it ranges from 500,000 to 1,000,000 years old; slightly younger than the Columbia Formation.

Number of Pages: 
20
This page tagged with:

RI67 The Cat Hill Formation and Bethany Formation of Delaware

RI67 The Cat Hill Formation and Bethany Formation of Delaware

Because of the rapid development occurring in coastal Delaware and the importance of ground water to the economy of the area, definition of formal lithostratigraphic units hosting aquifers and confining beds serves a useful purpose for resource managers, researchers, and consultants working in the area. The Pocomoke and Manokin are artesian aquifers pumped by hundreds of domestic and dozens of public wells along the Atlantic coast in Delaware and Maryland. These aquifers are being increasingly used for public water supply. Two formal lithostratigraphic units, the Cat Hill Formation and Bethany Formation, are established to supercede the Manokin formation and Bethany formation, respectively. In Delaware, these lithostratigraphic units host important aquifers—the Manokin, which occurs in the Cat Hill Formation, and the Pocomoke, which occurs in the Bethany Formation. Composite stratotypes of these units are identified in five drillholes located near Bethany Beach, Delaware.

RI66 Ground-Water Recharge Potential Mapping in Kent and Sussex Counties, Delaware

RI66 Ground-Water Recharge Potential Mapping in Kent and Sussex Counties, Delaware

Ground-water recharge potential maps support decision-making and policy development in land use, water-resources management, wastewater disposal systems development, and environmental permitting in state, county, and local governments. Recently enacted state law requires that counties and towns with more than 2,000 residents provide protection to areas with excellent recharge potential in comprehensive land use plans. Approximately 14 percent of Kent County and 8 percent of Sussex County have areas with excellent recharge potential. Ground-water recharge potential maps show land areas characterized by the water-transmitting capabilities of the first 20 feet below land surface. Ground-water recharge potential mapping in Kent and Sussex counties was done using geologic mapping techniques and over 6,000 subsurface observations in test borings, wells, borrow pits, natural exposures, and ditches. Hydraulic testing of more than 200 wells shows that the four recharge potential categories (excellent, good, fair, poor) can be used as predictors of the relative amounts and rates at which recharge will occur. Numerical modeling shows that recharge rates in areas with excellent recharge potential can be two to three times greater than rates in fair and poor recharge areas. Because of the association of recharge potential map categories with hydraulic properties, map categories are indicators of how fast contaminants will move and how much water may become contaminated. Numerical modeling of contaminant transport under different recharge potential conditions predicts that greater masses of contaminants move more quickly and affect greater volumes of water under higher recharge potential conditions than under lower recharge potential conditions. This information can be used to help prioritize and classify sites for appropriate remedial action.

RI65 Wellhead Protection Area Delineations for the Lewes-Rehoboth Beach Area, Delaware

RI65 Wellhead Protection Area Delineations for the Lewes-Rehoboth Beach Area, Delaware

Water supply in the rapidly developing Lewes and Rehoboth Beach areas of coastal Sussex County in Delaware is provided by more than 80 individual public water wells and hundreds of domestic wells. Significant concerns exist about the future viability of the ground-water resource in light of contamination threats and loss of recharge areas. As part of Delaware's Source Water and Assessment Protection Program, wellhead protection areas (WHPAs) were delineated for the 15 largest public supply wells operated by three public water systems. The WHPAs are derived from analysis of results of dozens of steady-state ground-water flow simulations. The simulations were performed with a Visual MODFLOW-based 6-layer, 315,600-node model coupled with GIS-based data on land cover, ground-water recharge and resource potentials, and other base maps and aerial imagery. Because the model was operated under steady-state conditions, long-term average pumping rates were used in the model. The flow model includes four boundary types (constant head, constant flux, head-dependant flux, and no flow), with layers that represent the complex hydrogeologic conditions based on aquifer characterizations. The model is calibrated to within a 10% normalized root mean squared error of the observed water table.

RI61 The Occurrence and Distribution of Several Agricultural Pesticides in Delaware’s Shallow Ground Water

RI61 The Occurrence and Distribution of Several Agricultural Pesticides in Delaware’s Shallow Ground Water

In June 1996, the U. S. Environmental Protection Agency (USEPA) proposed a regulation to require individual states to develop Pesticide Management Plans (PMPs) to protect their ground-water resources from pesticide contamination. The USEPA designated the predominantly agricultural pesticides atrazine, alachlor, cyanazine, metolachlor, and simazine as the first five that would require a PMP.

RI58 The Pliocene and Quaternary Deposits of Delaware: Palynology, Ages, and Paleoenvironments

RI58 The Pliocene and Quaternary Deposits of Delaware: Palynology, Ages, and Paleoenvironments

The surficial Pliocene and Quaternary sedimentary deposits of the Atlantic Coastal Plain of Delaware comprise several formal and informal stratigraphic units. Their ages and the paleoenvironments they represent are interpreted on the basis of palynological and lithologic data and, to a lesser degree, on geomorphology.

RI57 Evaluation of the Stream-Gaging Network in Delaware

RI57 Evaluation of the Stream-Gaging Network in Delaware

The stream-gaging network in Delaware is a major component of many types of hydrologic investigations. To ensure that the network is adequate for meeting multiple data needs by a variety of users, it must represent the range of hydrologic conditions and land-use types found in Delaware, and include enough stations to account for hydrologic variability. This report describes the current stream-gaging network in Delaware and provides an evaluation of its representativeness for the State.

RI54 Radiocarbon Dates from Delaware: A Compilation

RI54 Radiocarbon Dates from Delaware: A Compilation

Radiocarbon dates from 231 geologic samples from the offshore, coastal, and upland regions of Delaware have been compiled along with their corresponding locations and other supporting data. These data now form the Delaware Geological Survey Radiocarbon Database.

RI52 Quality and Geochemistry of Ground Water in Southern New Castle County, Delaware

RI52 Quality and Geochemistry of Ground Water in Southern New Castle County, Delaware

Water samples were collected from 63 wells in southern New Castle County to assess the occurrence and distribution of dissolved inorganic chemicals in ground water. Rapid growth is projected for the study area, and suitable sources of potable drinking water will need to be developed. The growth in the study area could also result in degradation of water quality. This report documents water quality during 1991-92 and provides evidence for the major geochemical processes that control the water quality.

RI51 Herbicides in Shallow Ground Water at Two Agricultural Sites in Delaware

RI51 Herbicides in Shallow Ground Water at Two Agricultural Sites in Delaware

Several common herbicides used on corn and soybeans were detected in ground water at two agricultural sites in Delaware as part of a study of the distribution of herbicides in shallow ground water and the environmental factors affecting their occurrence.

RI50 Plant Microfossils of the Calvert Formation of Delaware

RI50 Plant Microfossils of the Calvert Formation of Delaware

The Calvert Formation, deposited in a shallow sea during the late Oligocene and early to middle Miocene (15-27 million years ago), contains a very rich fossil microflora, both in terms of number of specimens and number of species. Most abundant are pollen of oak, pine, and hickory, but exotic taxa (those that no longer occur in Delaware) are present in all samples of this formation. They include pollen of Engelhardia type, Manilkara, Planera (water elm), Alangium(?), and palms. All of these exotics are genera of subtropical or tropical regions, some occurring now in Central America, Florida, and east Asia. The climate during the deposition of the Calvert Formation was probably subtropical and moist.

RI49 Results of the Coastal Sussex County, Delaware Ground-Water Quality Survey

RI49 Results of the Coastal Sussex County, Delaware Ground-Water Quality Survey

The results of this investigation of the Columbia aquifer in coastal Sussex County, Delaware, provide some of the data necessary to evaluate the condition of the area's primary source of fresh water. Chemical analyses of water samples from domestic, agricultural, public, and monitoring wells document the effects of past and present land use practices. Groundwater flow paths and flow systems are inferred from flow-net analysis, ground-water chemistry, and isotopic composition.

RI48 Geologic And Hydrologic Studies of the Oligocene - Pleistocene Section near Lewes, Delaware

RI48 Geologic And Hydrologic Studies of the Oligocene - Pleistocene Section near Lewes, Delaware

Borehole Oh25-02, located about 3 miles southwest of Lewes, Delaware, ends at a total depth of 1,337 ft in a mid-Oligocene glauconitic silt unit. It penetrated 317 ft of glauconitic sands and silts between the base of the Calvert Formation at a depth of 1,020 ft and total depth. A hiatus at 1,218 ft separates an outer neritic lower Miocene interval (Globorotalia kugleri Zone) above it from a deep upper bathyal mid-Oligocene (G. opima opima Zone) section below; the lower section is characterized by abundant large uvigerinid benthic foraminiferal species representing the transition from Uvigerina tumeyensis to Tiptonina nodifera. Similar uvigerinid assemblages identify the mid-Oligocene unit in boreholes near Bridgeville and Milford, Delaware; Cape May, New Jersey; and Ocean City, Maryland. Updip from these boreholes, the Calvert Formation, of latest Oligocene-middle Miocene age in Delaware, unconformably overlies middle Eocene glauconitic sands of the Piney Point Formation. The juxtaposition of the downdip mid-Oligocene rocks against the updip middle Eocene rocks can best be explained by a fault between the two regions.

This page tagged with:

RI46 Shallow Subsurface Temperatures at Selected Locations in Delaware

RI46 Shallow Subsurface Temperatures at Selected Locations in Delaware

Subsurface temperatures were measured in instrumented boreholes for about one and one-half years at depths down to 10 feet below land surface at four locations in the State. In New Castle County, temperatures were measured periodically in the field about twice a month at three sites, and, in Sussex County, they were automatically recorded every 15 minutes at one site. The depths of interest are generally in the unsaturated zone and are subject to both daily temperature fluctuations and longer seasonal changes.

RI45 Effects of Agricultural Practices and Septic-System Effluent on the Quality of Water in the Unconfined Aquifer in Parts of Eastern Sussex County, Delaware

RI45 Effects of Agricultural Practices and Septic-System Effluent on the Quality of Water in the Unconfined Aquifer in Parts of Eastern Sussex County, Delaware

The unconfined aquifer is a major source of water supply in eastern Sussex County, Delaware. It also is an important source of water for surface-water bodies and deeper, confined aquifers. The aquifer consists mainly of permeable sand and gravel; its shallow water table is susceptible to contamination by nitrate and other chemical constituents associated with agricultural practices and effluent from septic systems.

RI44 Ground-Water Levels in Delaware January 1978 - December 1987

RI44 Ground-Water Levels in Delaware January 1978 - December 1987

Water-level records from 19 observation wells in Delaware for the period January 1978 - December 1987 provide the bases for analyses of water-level fluctuations. Water levels in shallow water-table wells generally rise from November to March when recharge exceeds discharge and decline during the warm growing season from May through September. Although water levels in individual water-table wells fluctuated by as much as 11.72 feet during the 10-year period studied, the water-table system remained in a state of dynamic equilibrium and exhibited no significant changes in aquifer storage.

This page tagged with:

RI42 Stratigraphy and Depositional History of the Post-Choptank Chesapeake Group

RI42 Stratigraphy and Depositional History of the Post-Choptank Chesapeake Group

Onshore and offshore geological and geophysical data were used to investigate the lithostratigraphy, seismic stratigraphy, and depositional history of the late Tertiary age post-Choptank Chesapeake Group rocks in Sussex County, Delaware and adjacent counties in Maryland. The results of this investigation suggest that the St. Marys (?) Formation and the sandy interval of which the Manokin aquifer is a part, are distinct lithostratigraphic units. The Manokin formation is proposed as an informal lithostratigraphic unit that refers to the sandy interval of which the Manokin aquifer is a part. On a regional scale, the section containing the Ocean City and Pocomoke aquifers and adjacent and intervening confining beds is best treated as a single undifferentiated lithostratigraphic unit. The Bethany formation is proposed as an informal lithostratigraphic unit that refers to this section.