First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Cape Henlopen"

MS6 Cross Section of Pliocene and Quaternary Deposits Along the Atlantic Coast of Delaware

Cross Section of Pliocene and Quaternary Deposits Along the Atlantic Coast of Delaware

Exploration for sand resources for beach nourishment has led to an increase in the amount of geologic data available from areas offshore Delaware's Atlantic Coast. These data are in the form of cores, core logs, and seismic reflection profiles. In order to provide a geologic context for these offshore data, this cross section has been constructed from well and borehole data along Delaware's Atlantic coastline from Cape Henlopen to Fenwick Island. Placing the offshore data in geologic context is important for developing stratigraphic and geographic models for predicting the location of stratigraphic units found offshore that may yield sand suitable for beach nourishment. The units recognized onshore likely extend offshore to where they are truncated by younger units or by the present seafloor.

Evaluation of Rapid Infiltration Basin Systems (RIBS)

Diagram of a Rapid Infiltration Basin Systems (RIBS)
Project Contact(s):

This study has evaluated pre-treatment and physical and geochemical components of rapid infiltration basin systems (RIBS). The project was begun in 2008 with an evaluation of performance of treatment plants associated with RIBS in Delaware, Massachusetts, North Carolina, and New Jersey. Field and simulation evaluations of a RIBS located at Cape Henlopen State Park were completed in 2011. Simulation studies of infiltration and nitrogen cycling in the vadose zone were completed in early 2013. Multiple conference presentations, reports, and articles are now being released.

SP26 Historical Coastline Changes of Cape Henlopen, Delaware

SP26 Historical Coastline Changes of Cape Henlopen, Delaware

Coastlines are not static features. They are shaped by the daily effects of wind, current, and wave activity. Over time, a coastline may move landward due to relative sea-level rise or low sediment supply, or seaward due to relative sea-level fall or an overabundance of sediment. Perhaps the most striking example of shoreline movement in Delaware is at Cape Henlopen which has grown northward approximately one mile in the last 160 years. Maps and aerial photographs show these changes.

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

The surficial geology of the Lewes and Cape Henlopen quadrangles reflects the geologic history of the Delaware Bay estuary and successive high and low stands of sea levels during the Quaternary. The subsurface Beaverdam Formation was deposited as part of a fluvial-estuarine system during the Pliocene, the sediments of which now form the core of the Delmarva Peninsula. Following a period of glacial outwash during the early Pleistocene represented by the Columbia Formation found to the northwest of the map area (Ramsey, 1997), the Delaware River and Estuary developed their current positions. The Lynch Heights and Scotts Corners Formations (Ramsey, 1993, 1997, 2001) represent shoreline and estuarine deposits associated with high stands of sea level during the middle to late Pleistocene on the margins of the Delaware Estuary. In the map area, the Lynch Heights Formation includes relict spit and dune deposits at the ancestral intersection of the Atlantic Coast and Delaware Bay systems, similar in geomorphic position to the modern Cape Henlopen.