Atlantic Coastal Plain

Bethany Formation

The composition, thickness, and geophysical log signature of the Bethany Formation vary with location and depth. In general, the Bethany Formation is a sequence of clayey and silty beds with discontinuous lenses of sand (Andres, 1986; Ramsey, 2003). The most common lithologies are silty, clayey fine sand; sandy, silty clay; clayey, sandy silt; fine to medium sand; sandy, clayey silt, and medium to coarse sand with granule and pebble layers. Thin gravel layers occur most frequently in updip areas and are rarer in downdip areas. Sands are typically quartzose. Lignite, plant remains, and mica are common, grains of glauconite are rare. In the Lewes area, Ramsey (2003) describes the Bethany Formation as consisting of gray, olive gray, bluish-gray clay to clayey silt interbedded with fine to very coarse sand. Lignitic and gravelly beds are common.

Cypress Swamp Formation

The upper part of the Cypress Swamp Formation is a multi-colored, thinly bedded to laminated, quartzose fine sand to silty fine sand, with areally discontinuous laminae to thin beds of fine to coarse sand, sandy silt, clayey silt, organic silt, and peat. The lowermost 3 to 6 ft of the unit are commonly composed of thin beds of dark-colored, organic-rich, clayey silt with laminae to thin beds of fine sand and peat. Fine sand to fine sandy silt are present at the base of the unit in boreholes where the lower organic-rich beds are absent. Dark-colored, peaty, organic-rich silt and clayey silt with laminae of fine to medium sand as much as 4.5 ft thick are common within 5 ft of land surface, but may be absent in some locations. Colors are shades of brown, gray, and green where the unit contains visible organic matter, and orange, yellow, and red at shallow depths where the organic-rich beds are absent. Clay-sized minerals are a mixed suite that includes kaolinite, chlorite, illite, and vermiculite.

RI33 Exploring, Drilling, and Producing Petroleum Offshore

This report was prepared to provide a concise description of offshore operations related to exploration for petroleum (oil and natural gas} from the initial geologic and geophysical investigations to production. Petroleum deposits differ in their physical and chemical properties and are associated in the rocks with saline water. The origin of petroleum and its migration through rocks are not well understood. Commercial accumulations are found in certain suitable rocks or geologic structures - stratigraphic and structural traps, respectively.

A Coastal Flood Monitoring System for Delaware

Project Contact(s)

During the last two decades, storms such as Hurricanes Katrina and Ike along the Gulf of Mexico and Floyd and Hugo along the Atlantic Coast of the United States have resulted in significant loss of life, injuries, and property damages exceeding well over 100 billion dollars. Much of the damage associated with these and other tropical and extra-tropical weather systems is associated with severe coastal flooding. The purpose of this project is to develop a real-time coastal flood monitoring and warning system for the coastal communities in Kent County, Delaware. This system will serve as a prototype for similar early-warning systems, which may then be applied along the entire Delaware coast.

RI76 Stratigraphy, Correlation, and Depositional Environments of the Middle to Late Pleistocene Interglacial Deposits of Southern Delaware

Rising and highstands of sea level during the middle to late Pleistocene deposited swamp to nearshore sediments along the margins of an ancestral Delaware Bay, Atlantic coastline, and tributaries to an ancestral Chesapeake Bay. These deposits are divided into three lithostratigraphic groups: the Delaware Bay Group, the Assawoman Bay Group (named herein), and the Nanticoke River Group (named herein). The Delaware Bay Group, mapped along the margins of Delaware Bay, is subdivided into the Lynch Heights Formation and the Scotts Corners Formation.