First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Atlantic Coastal Plain"

Thickness, Elevation of the Base, and Transmissivity Grids of the Unconfined Aquifer of Sussex County (Data Product No. 06-01)

Thickness, Elevation of the Base, and Transmissivity Grids of the Unconfined Aquifer of Sussex County (Data Product No. 06-01)

The unconfined portion of the Columbia aquifer is a key hydrologic unit in Delaware, supplying water to many agricultural, domestic, industrial, public, and irrigation wells. The aquifer is recharged through infiltration of precipitation and is the source of fair-weather stream flow and water in deeper confined aquifers. The aquifer occurs in permeable sediments ranging in age from Miocene to Recent. Over most of Delaware, the top of the unconfined or water-table portion of the Columbia aquifer occurs at depths less than 10 feet below land surface. Because of the permeable character of the aquifer and its near-surface location, the unconfined aquifer is highly susceptible to contamination.

Catalog of Delaware Earthquakes Spreadsheet

Catalog of Delaware Earthquakes Spreadsheet

The occurrences of earthquakes in northern Delaware and adjacent areas of Pennsylvania, Maryland, and New Jersey are well documented by both historical and instrumental records. Over 550 earthquakes have been documented within 150 miles of Delaware since 1677. One of the earliest known events occurred in 1737 and was felt in Philadelphia and surrounding areas. The largest known event in Delaware occurred in the Wilmington area in 1871 with an intensity of VII (Modified Mercalli Scale). The second largest event occurred in the Delaware area in 1973 (magnitude 3.8 and maximum Modified Mercalli Intensity of V-VI). The epicenter for this event was placed in or near the Delaware River. Sixty-nine earthquakes have been documented or suspected in Delaware since 1871.

Kent and Sussex Water Recharge Data (Digital Data Product No 02-01)

Ground-Water Recharge Potential For Kent and Sussex Counties

Ground-water recharge potential maps show land areas characterized by their abilities to transmit water from land surface to a depth of 20 feet. The basic methods for mapping ground-water recharge potential are presented in Delaware Geological Survey Open File Report No. 34 (Andres, 1991) and were developed specifically for the geohydrologic conditions present in the Coastal Plain of Delaware. The digital data for this layer comes from DGS Digital Data Product DP 02-01, Digital Ground-Water Recharge Potential Map Data For Kent and Sussex Counties, Delaware: A. S. Andres, C. S. Howard, T. A. Keyser, L. T. Wang, 2002.

Magothy Formation


Dark-gray to gray silty clay to clayey silt that contains abundant fragments of lignite; grades downward into a very fine to fine sand with scattered and discontinuous thin beds of clayey silt with lignite fragments. Thickness ranges from 20 to 50 ft. Updip in the vicinity of the Chesapeake and Delaware Canal, the Magothy fills channels incised into the Potomac Formation and is discontinuous in its extent. Interpreted to have been deposited in coastal to nearshore environments.

Merchantville Formation


Light- to dark-gray, very micaceous, glauconitic, very silty fine- to very fine-grained sand to fine sandy silt. Ranges from 20 to 120 ft in thickness. Marine in origin.

Englishtown Formation


Light-gray to white, micaceous, slightly silty to silty, fine-grained, slightly glauconitic quartz sand. In outcrop, it is extensively burrowed with Ophiomorpha burrows. Ranges from 20 to 50 ft in thickness. On the cross-section, the Englishtown is shown only where the sands are well developed. Interpreted to be nearshore marine to tidal flat in origin.

Marshalltown Formation


Greenish-gray, slightly silty, fine-grained glauconitic quartz sand. Glauconite comprises 30 to 40 percent of the sand fraction. Ranges from 10 to 50 ft in thickness. Extensively burrowed. Interpreted to be marine in origin.

Navesink Formation

Generally a calcareous silt that is slightly to moderately sandy and slightly to moderately clayey. Sand is fine to very fine grained composed of about 50 percent glauconite, 40 percent peloids, and 10 percent quartz. Sediment is laminated, marked by varying amounts of clay and sand. Peloids are yellow to yellowish-brown flat to ovoid pellets that are calcareous and may contain flakes of chitin and grains of glauconite or quartz. Scattered shell fragments are present but form a minor constituent of the sediment. Uniformly dark-greenish-gray, slightly lighter in color than the overlying Hornerstown Formation. 10 to 20 ft thick.

Manasquan Formation


Consists of 30 ft of silty, shelly, fine sands that are commonly glauconitic (Benson and Spoljaric, 1996). Deposited during the latest Paleocene to early Eocene (Benson and Spoljaric, 1996). Based on microfossils (unpublished DGS file data), it can be characterized as an open shelf deposit.

Shark River Formation


Glauconitic clayey silt and clay, with some glauconite sand and fine glauconitic quartz sand. Deposited in the middle Eocene (Benson and Spoljaric, 1996), and is generally 60 to 70 ft thick. Based on the microfossils (unpublished DGS file data), it can be characterized as an open shelf deposit.

Potomac Formation


Dark-red, gray, pink, and white silty clay to clayey silt and very fine to medium sand beds. Beds of gray clayey silt to very fine sand that contain pieces of charcoal and lignite are common. Deposited in a fluvial setting in a tropical to subtropical environment as indicated by abundant paleosol horizons. Ranges from 20 ft updip to over 1600 ft thick in southern New Castle County.

Mt. Laurel Formation


Slightly calcareous, glauconitic, quartz sand that is medium to fine grained. Contains about 3 to 5 percent glauconite. Sand is subrounded to subangular and slightly silty with a few moderately silty zones. Scattered belemnites are present as well as a few scattered shell fragments or thin shell beds. Uniform dark olive gray or yellowish-brown where weathered. In outcrop, reported to be extensively burrowed (Owens, et al., 1970). Where it is the surficial deposit south of the Chesapeake and Delaware Canal, the Mt. Laurel can be confused with the Columbia Formation, especially where the color is similar. Can be differentiated by ubiquitous presence of glauconite and generally better sorted sands of the Mt. Laurel. Marine in origin. Ranges from 30 to 100 ft in thickness.

Hornerstown Formation


Glauconite sand that is silty and slightly to moderately clayey and contains scattered shell beds. Glauconite approximately 90 percent to 95 percent of the sand fraction and quartz 5 percent to 10 percent. Near the top of unit, silt-filled burrows are present. Lower, the unit is commonly laminated with silty sand and moderately clayey sand. Silt and clay matrix is calcareous. Uniformly a dark-greenish-gray. Interpreted to be marine in origin. The Cretaceous-Tertiary boundary is considered to lie within the formation. Rarely occurs in outcrop and where shown on the map is covered by colluvium along the stream valley bluffs. Ranges between 10 and 50 feet in thickness.

Vincentown Formation


Glauconitic sand that ranges from slightly silty to moderately silty and slightly to moderately clayey. Dominant constituent is subrounded to subangular clear quartz sand that ranges from medium to fine grained. Fine-grained glauconite is a secondary constituent, which ranges from 5 percent in the clayey zones to 15 percent where cleaner. Towards bottom of unit, glauconite percentages increase to about 50 percent of the sand fraction. Silty and clayey zones are thin to thick laminae ranging from 0.01 to 0.5 ft thick. Olive gray to dark-yellowish-brown in zones where iron cement is present. Interpreted to be marine in origin. Rarely occurs in outcrop and is covered by colluvium along the stream valley bluffs where shown on the map. Ranges from 50 to 100 ft in thickness in the subsurface and less than 50 ft thick where it is cut by younger deposits updip.

Bryn Mawr Formation


Reddish-brown to yellowish-brown silty quartz sand to sandy silt that interfingers with medium to coarse clayey sand with gravel. Sand fraction, where a sandy silt, is fine- to very fine-grained and angular to subangular. Iron-cemented zones are common. Gravel fraction is primarily quartz. Sands are quartzose with minor amounts of weathered feldspar. Opaque heavy minerals form up to 3 percent of the sand fraction. Unit ranges up to 70 ft thick but generally less than 30 ft thick and commonly less than 10 ft thick. Surface forms a distinctive terrace that has elevations between 350 ft and 425 ft, and it overlies saprolite of the Piedmont rocks. No macrofossils have been recovered. Fossil pollen from the York Pit in Cecil County, Maryland (Pazzaglia, 1993; unpublished DGS data) indicate a Miocene age. Owens (1999) considered the unit late Oligocene in Pennsylvania.

Bridgeton Formation


Reddish-brown to brown, medium to very coarse, poorly sorted sand to silty quartz sand containing scattered gravel beds. Less than 15 ft thick and underlies a relict terrace flat that has elevations between 170 ft and 180 ft and parallels the present Delaware River. More extensive to the north in Pennsylvania (Owens, 1999; Berg et al., 1980).

Old College Formation


Reddish-brown to brown clayey silt, silty sand to sandy silt, and medium to coarse quartz sand with pebbles (Ramsey, 2005). Rock fragments of mica or sillimanite quartzose schist are common sand fraction. At land surface, a gray to grayish-brown clayey silt is present. Sands are cross-bedded with laminae of muscovite or heavy minerals defining the cross-sets. Silty beds tend to be structureless, or in the gray clayey silt beds, heavily bioturbated by roots. No fossils other than pollen have been recovered. Pollen indicate a cold climate during deposition of the upper clayey silt unit (unpublished DGS data). Stratigraphic relationships indicate either slightly younger than or contemporaneous with the Columbia Formation. Ranges from 5 to 40 ft in thickness.

Delaware Bay Group


The Delaware Bay Group consists of transgressive deposits that were laid down along the margins of ancestral Delaware Bay estuaries during middle to late Pleistocene rises and highstands of sea level. The Delaware Bay Group was described in detail by Ramsey (1997). The Delaware Bay Group is comprised of the Lynch Heights Formation, the Scotts Corners Formation, and the Cape May Formation (undivided) in New Jersey.

RI58 The Pliocene and Quaternary Deposits of Delaware: Palynology, Ages, and Paleoenvironments

RI58 The Pliocene and Quaternary Deposits of Delaware: Palynology, Ages, and Paleoenvironments

The surficial Pliocene and Quaternary sedimentary deposits of the Atlantic Coastal Plain of Delaware comprise several formal and informal stratigraphic units. Their ages and the paleoenvironments they represent are interpreted on the basis of palynological and lithologic data and, to a lesser degree, on geomorphology.

Piney Point Formation


Bright green, fine to coarse, shelly, glauconitic (20 to 40% glauconite), quartz sand. Silty and clayey toward the bottom and coarsens upwards. Considered to be a marine deposit (Benson, Jordan, and Spoljaric, 1985). The Piney Point aquifer coincides with the sandier portion of the unit. Ranges up to 250 feet thick in the southern portion of Kent County.