Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Appalachian Piedmont"

Setters Formation

Osq

In Delaware, predominantly an impure quartzite and garnet-sillimanite-biotite-microcline schist. Major minerals include microcline, quartz, and biotite with minor plagioclase, and garnet. Muscovite and sillimanite vary with metamorphic grade. Accessory minerals are iron-titanium oxides, zircon, sphene, and apatite. Microcline is an essential constituent of the quartzites and schists and serves to distinguish the Setters rocks from the plagioclase-rich schists and gneisses of the Wissahickon Formation.

Cockeysville Marble

Ocm

In Delaware, predominantly a pure, coarsely crystalline, blue-white dolomite marble interlayered with calc-schist. Major minerals in the marble include calcite and dolomite with phlogopite, diopside, olivine, and graphite. Major minerals in the calc-schist are calcite with phlogopite, microcline, diopside, tremolite, quartz, plagioclase, scapolite, and clinozoisite. Pegmatites and pure kaolin deposits and quartz occur locally.

Serpentinite

s

Massive fine-grained dark to light yellow-green serpentinite. Contacts with the Wissahickon Formation are not exposed.

Metapyroxenite and metagabbro (undifferentiated)

mpg

Light-colored coarse-grained rocks composed of interlocking grains of light colored, fibrous amphiboles, most likely magnesium-rich cummingtonite and/or anthophyllite with possible clinochlor. These rocks become finer grained and darker as hornblende replaces some of the Mg-rich amphiboles. Associated with the metapyroxenites are coarse-grained metamorphosed gabbros composed of hornblende and plagioclase. The metapyroxenites and metagabbros are probably cumulates.

Wissahickon Formation

Owf

Interlayered psammitic and pelitic gneiss with amphibolite. Psammitic gneiss is a medium- to fine-grained biotite-plagioclase-quartz gneiss with or without small garnets. Contacts with pelitic gneiss are gradational. Pelitic gneiss is medium- to coarse-grained garnet-sillimanite-biotite-plagioclase-quartz gneiss. Unit has a streaked or flasered appearance owing to the segregation of garnet-sillimanite-biotite stringers that surround lenses of quartz and feldspar. Throughout, layers of fine to medium-grained amphibolite composed of plagioclase and hornblende, several inches to <30 feet thick or as large massive bodies, are in sharp contact with the psammitic and pelitic gneisses. An attempt has been made to show some of the amphibolites mappable at the scale of the map. Granitic pegmatite is ubiquitous and occurs at all scales. Pyroxene bearing quartzite with garnet occurs locally near the contact with the Wilmington Complex. An ultramafic lens composed of cumulus layers of serpentinized peridotite, metapyroxenite, and metagabbro occurs near Hoopes Reservoir. The ultramafic lens may be correlative with the Baltimore Mafic Complex.

Pegmatite

p

Coarse- to very coarse-grained granitic pegmatite with tourmaline crystals locally. Where outcrop is present, pegmatite is tabular and concordant with the regional trend of the underlying Wissahickon Formation. Lenticular xenoliths of Wissahickon gneisses occur locally in the pegmatite.

Windy Hills Gneiss

Owhg

Thinly interlayered, fine- to medium-grained hornblende-plagioclase amphibolite, biotite gneiss, and felsic gneiss, possibly metavolcanic. Felsic gneisses contain quartz and plagioclase with or without microcline with minor pyroxene and/or hornblende and/or biotite. Metamorphic grade in this unit decreases from granulite facies in the northeast to amphibolite facies toward the southwest. Correlated with the Big Elk Member of the James Run Formation in Cecil County, Maryland.

Faulkland Gneiss

Ofg

Predominantly fine- to coarse-grained amphibolites and quartz amphibolites with minor felsic rocks, probably metavolcanic. Major minerals are amphibole and plagioclase with or without pyroxene and/or quartz. Amphibole may be hornblende, cummingtonite, gedrite, and/or anthophyllite. Halos of plagioclase and quartz around porphyroblasts of magnetite, orthopyroxene, and garnet are common features.

Christianstead Gneiss

Ochg

Coarse-grained, foliated granodioritic gneiss. Major minerals are biotite, microcline, plagioclase, and quartz. Includes thin layers of fine-grained foliated amphibolite plus large pegmatites.

Barley Mill Gneiss

Obmg

Coarse-grained, foliated tonalite gneiss. Major minerals are biotite, hornblende, plagioclase, and quartz. Includes mafic enclaves or layers composed of subequal amounts of hornblende and plagioclase. Also includes a coarse-grained granitic lithology composed of biotite, microcline, plagioclase, and quartz.

Montchanin Metagabbro

Omm

Coarse-grained gabbroic and metagabbroic rocks, variably metamorphosed and deformed. Primary igneous minerals include olivine, clinopyroxene, orthopyroxene, and plagioclase.

Mill Creek Metagabbro

Omcm

Coarse-grained gabbroic and metagabbroic rocks, variably metamorphosed and deformed. Primary minerals are hornblende and plagioclase.

Rockford Park Gneiss

Orpg

Fine-grained mafic and fine- to medium-grained felsic gneisses interlayered on the decimeter scale. Layers are laterally continuous, but mafic layers commonly show boudinage. Felsic layers are composed of quartz and plagioclase with < 10 modal percent pyroxene. Mafic layers contain subequal amounts of plagioclase, pyroxene, and hornblende. Penetrative deformation and granulite facies metamorphism have obscured igneous fabrics and contact relationships.

RI60 Geochemistry of the Mafic Rocks, Delaware Piedmont and Adjacent Pennsylvania and Maryland: Confirmation of Arc Affinity

RI60 Geochemistry of the Mafic Rocks, Delaware Piedmont and Adjacent Pennsylvania and Maryland: Confirmation of Arc Affinity

Geochemical data from Ordovician and Silurian mafic rocks in the Wilmington Complex in Delaware, the James Run Formation in Cecil County, Maryland, and the Wissahickon Formation in Delaware and Pennsylvania were collected in conjunction with preparation of a new geologic map of the Delaware-Pennsylvania Piedmont. Although concentrations of most elements may have been disrupted by metamorphism, the more stable high field strength elements, including the rare earth elements (REE), are consistent within mapped lithodemic units and are compared to modern basaltic magmas from relatively well known tectonomagmatic environments.

RI59 Bedrock Geology of the Piedmont of Delaware and Adjacent Pennsylvania

RI59 Bedrock Geology of the Piedmont of Delaware and Adjacent Pennsylvania

This report accompanies a new map that revises the original bedrock geologic maps of the Delaware Piedmont compiled by Woodruff and Thompson and published by the Delaware Geological Survey (DGS) in 1972 and 1975. Combined detailed mapping, petrography, geochemistry, and U-Pb geochronology have allowed us to redefine two rock units and formally recognize eleven new units. A section of the Pennsylvania Piedmont is included on the new map to show the entire extent of the Mill Creek Nappe and the Arden Plutonic Supersuite.

This page tagged with:

Brandywine Blue Gneiss

Obbg

Medium to coarse grained granulites and gneisses composed of plagioclase, quartz, orthopyroxene, clinopyroxene, brown-green hornblende, magnetite, and ilmenite. Mafic minerals vary from < 5-30 modal percent. A lineation due to a preferred orientation of quartz and mafic minerals is obvious on weathered surfaces. Unit contains thin, discontinuous fine-grained mafic layers.

Perkins Run Gabbronorite Suite

Spgs

Fine- to coarse-grained gabbronorite and minor diorite with subophitic to ophitic textures, variably foliated or lineated. Plagioclase, orthopyroxene, clinopyroxene, and hornblende are major minerals; biotite and olivine locally present. Olivine typically surrounded by corona structures as described for the Bringhurst Gabbro. Contemporaneous with the Ardentown Granitic Suite.

Ardentown Granitic Suite

Sags

Medium- to coarse-grained granitic rocks containing primary orthopyroxene and clinopyroxene; includes quartz norites, quartz monzonorites, opdalites, and charnockites. Feldspar phenocrysts common. Mafic enclaves locally abundant in proximity to gabbronorites.

Bringhurst Gabbro

Sbg

Coarse- to very coarse-grained gabbronoite with subophitic textures. Primary minerals are plagioclase, olivine, clinopyroxene and orthopyroxene. Olivine, where present, is surrounded by an inner corona of orthopyroxene and an outer corona of pargasitic hornblende, both with spinel symplectites. The gabbronorites locally contain abundant xenoliths of mafic Brandywine Blue Gneiss.

Iron Hill Gabbro

Sihg

Black to very dark green, coarse- to very coarse-grained, uralitized olivine-hypersthene gabbronorite and pyroxenite with subophitic textures. Primary minerals are calcic plagioclase, orthopyroxene, clinopyroxene, and olivine. Amphibole is secondary, a pale blue-green actinolite. Olivine, when present, is surrounded by coronas similar to those in the Bringhurst Gabbro. The gabbronorite is deeply weathered leaving a layer of iron oxides, limonite, goethite, and hematite, mixed with ferruginous jasper. The jasper contains thin seams lined with drusy quartz. Contacts with the Christianstead Gneiss are covered with sediments of the Coastal Plain.