Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "watersheds"

Project Update: NEWRnet - North East Water Resources Network

Monitoring station at Coursey Pond outlet

Infrastructure that will support the NEWRNet water quality monitoring station was installed at the main outflow of Coursey Pond on the fish ladder on April 23, 2014.

NEWRnet - North East Water Resources Network

NEWRnet study sites
Project Contact(s):

The North East Water Resources (NEWRnet) consortium of EPSCoR jurisdictions of Delaware (DE), Rhode Island (RI), and Vermont (VT) will create an advanced sensor network in watersheds for gathering high-frequency, spatially-extensive water quality and quantity data and a network of lab and field-based experiments and agent-based models to investigate how to align sensor data and their visualization with utilization by stakeholders. DGS is participating in the watershed sensing network by installing and operating a nitrogen and organic carbon sensor and stream discharge monitoring station in the Murderkill River watershed, and collaborating with the project team to interpret results.

Delaware Geologic Information Resource (DGIR) Map Viewer

DGIR Map Viewer Screenshot
Project Contact(s):

The Delaware Geologic Information Resource (DGIR) is an online data display tool and map viewer for a variety of geologic and hydrologic information released by the Delaware Geological Survey. It was designed to deliver the most commonly available and requested geologic and hydrologic information that is appropriate for use in hydrologic studies, required by regulation and ordinance, and to support state resource management decisions.

Scott Andres participated in the 2011 NGWA Summit in Baltimore, MD

Scott Andres of the Delaware Geological Survey and Holly Michael, assistant professor of geological sciences, participated in 2011 National Ground Water Association (NGWA) Groundwater Summit and were co-organizers of the session titled "Submarine Discharge of Groundwater and Nutrients into Estuaries and Oceans," May 3, Baltimore.

DGS releases new geologic map of Rehoboth Beach area

The Delaware Geological Survey (DGS) has published a new geologic map of the Rehoboth Beach area in eastern Sussex County entitled Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware. Geologic Map 16 presents the results of research by Kelvin W. Ramsey of the DGS.

DNREC raises capital request - Sixfold hike includes beach, water projects

More money would go to projects that make Delaware cleaner, greener and safer under a mostly no-growth budget outlined Monday by the Department of Natural Resources and Environmental Control. Agency Secretary Collin P. O'Mara asked the Office of Management and Budget for about $35.2 million in general funds for the fiscal year that begins July 1, with health care costs accounting for most of the nearly $2 million increase from the current year.

RI68 Estimation of the Water Table for the Inland Bays Watershed, Delaware

RI68 Estimation of the Water Table for the Inland Bays Watershed, Delaware

A geographic information system-based study was used to estimate the elevation of the water table in the Inland Bays watershed of Sussex County, Delaware, under dry, normal, and wet conditions. Evaluation of the results from multiple estimation methods indicates that a multiple linear regression method is the most viable tool to estimate the elevation of the regional water table for the Coastal Plain of Delaware. The variables used in the regression are elevation of a minimum water table and depth to the minimum water table from land surface. Minimum water table is computed from a local polynomial regression of elevations of surface water features. Correlation coefficients from the multiple linear regression estimation account for more than 90 percent of the variability observed in ground-water level data. The estimated water table is output as a GIS-ready grid with 30-m (98.43 ft) horizontal and 0.305-m (1 ft) vertical resolutions.

OFR47 Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River

OFR47 Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River

Digital watershed and bay polygons for use in geographic information systems were created for Rehoboth Bay, Indian River, and Indian River Bay in southeastern Delaware. Polygons were created using a hierarchical classification scheme and a consistent, documented methodology that enables unambiguous calculations of watershed and bay surface areas within a geographic information system. The watershed boundaries were delineated on 1:24,000-scale topographic maps. The resultant polygons represent the entire watersheds for these water bodies, with four hierarchical levels based on surface area. Bay boundaries were delineated by adding attributes to existing polygons representing water and marsh in U.S. Geological Survey Digital Line Graphs of 1:24,000-scale topographic maps and by dissolving the boundaries between polygons with similar attributes. The hierarchy of bays incorporates three different definitions of the coastline: the boundary between open water and land, a simplified version of that boundary, and the upland-lowland boundary. The polygon layers are supplied in a geodatabase format.

Number of Pages: 
11

OFR44 Storm-Water and Base-Flow Sampling and Analysis in the Delaware Inland Bays Preliminary Report of Findings 1998-2000

OFR44 Storm-Water and Base-Flow Sampling and Analysis in the Delaware Inland Bays Preliminary Report of Findings 1998-2000

This report provides initial research results of a storm-water and base-flow sampling and analysis project conducted by the University of Delaware College of Marine Studies (CMS) and the Delaware Geological Survey (DGS). Base-flow samples were collected from six tributary watersheds of Delaware’s Inland Bays on 29 occasions from October 1998 to May 2000. Water samples were filtered in the field to separate dissolved nutrients for subsequent analysis, and a separate sample was collected and returned to the laboratory for particulate nutrient determinations. On each sampling date, temperature, conductivity, pH, and dissolved oxygen concentrations were determined at each sampling station. Stream discharge measurements at each of these sites were made by the U.S. Geological Survey (USGS) under a joint-funded agreement with the Delaware Department of Natural Resources and Environmental Control (DNREC) and the DGS. Together, the nutrient and discharge data were used to determine the total and unit (normalized to watershed area) nutrient loading from base flow to the Inland Bays from each of these watersheds on a quarterly and annual basis. At the same six stations, storm water was collected during eight storms from May 1999 to April 2000. Storm-water loadings of nutrients from each watershed were calculated from the concentrations of nutrients in water samples collected at fixed time intervals from the beginning of the storm-water discharge period until recession to base flow. These data provide DNREC with a more complete picture of the seasonal dependence of nutrient loading to the Bays from which to establish goals for total maximum daily loads in the Inland Bays watershed.

SP27 Water Table in the Inland Bays Watershed, Delaware

SP27 Water Table in the Inland Bays Watershed, Delaware

This poster shows three different map views of the water table as well as information about how the maps were made, how the depth to water table changes with seasons and climate, and how the water table affects use and disposal of water. The map views are of depth to the water table, water-table elevation (similar to topography), and water-table gradient (related to water flow velocity).

Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River (OFR 47)

Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River (OFR 47)

Digital watershed and bay polygons for use in geographic information systems were created for Rehoboth Bay, Indian River, and Indian River Bay in southeastern Delaware. Polygons were created using a hierarchical classification scheme and a consistent, documented methodology that enables unambiguous calculations of watershed and bay surface areas within a geographic information system. The watershed boundaries were delineated on 1:24,000-scale topographic maps. The resultant polygons represent the entire watersheds for these water bodies, with four hierarchical levels based on surface area. Bay boundaries were delineated by adding attributes to existing polygons representing water and marsh in U.S. Geological Survey Digital Line Graphs of 1:24,000-scale topographic maps and by dissolving the boundaries between polygons with similar attributes. The hierarchy of bays incorporates three different definitions of the coastline: the boundary between open water and land, a simplified version of that boundary, and the upland-lowland boundary. The polygon layers are supplied in a geodatabase format.