Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "groundwater discharge"

"Integration of multiple geophysical techniques to image a submarine groundwater discharge zone"

A. Scott Andres of the Delaware Geological Survey, presented "Integration of multiple geophysical techniques to image a submarine groundwater discharge zone" at the 2013 National Groundwater Association Annual Summit held in San Antonio, TX Apr 28-May 1. Co-authors were Holly Michael, John Madsen, Chris Russoniello, and Cristina Fernandez of the UD Dept of Geological Sciences, John Bratton of NOAA, and VeeAnn Cross of US Geological Survey.

This page tagged with:

Scott Andres participated in the 2011 NGWA Summit in Baltimore, MD

Scott Andres of the Delaware Geological Survey and Holly Michael, assistant professor of geological sciences, participated in 2011 National Ground Water Association (NGWA) Groundwater Summit and were co-organizers of the session titled "Submarine Discharge of Groundwater and Nutrients into Estuaries and Oceans," May 3, Baltimore.

Submarine groundwater discharge to a coastal lagoon

Scott Andres, scientist at Delaware Geological Survey, did a presentation titled "Submarine groundwater discharge to a coastal lagoon," Spring Seminar Series, Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pa., Feb. 4.

This page tagged with:

Presentation on Submarine Groundwater Discharge

A. Scott Andres of Delaware Geological Survey gave a presentation at the Delaware Water Well Licensing Board Fall Seminar in Dover, on December 3rd. The topic was "Submarine Groundwater Discharge".

This page tagged with:

Scientists study flow of groundwater into bays - results may help track pollution

Scientists study flow of groundwater into bays. Results may help track pollution.

On a small, homemade barge, built from the skeleton of an old ship, a gray slurry of bay bottom sand flows out of a pipe into a bucket. Two scientists, a well driller and two student interns drill a hole in the floor of the Indian River Bay. They’ll install a very long pipe into the hole and use it to monitor groundwater – how much flows into the bay, how salty it is and how many nutrients it carries with it.

RI74 Locating Ground-Water Discharge Areas in Rehoboth and Indian River Bays and Indian River, Delaware Using Landsat 7 Imagery

RI74 Locating Ground-Water Discharge Areas in Rehoboth and Indian River Bays and Indian River, Delaware Using Landsat 7 Imagery

Delaware’s Inland Bays in southeastern Sussex County are valuable natural resources that have been experiencing environmental degradation since the late 1960s. Stresses on the water resource include land use practices, modifications of surface drainage, ground-water pumping, and wastewater disposal. One of the primary environmental problems in the Inland Bays is nutrient over-enrichment. Nitrogen and phosphorous loads are delivered to the bays by ground water, surface water, and air. Nitrogen loading from ground-water discharge is one of the most difficult to quantify; therefore, locating these discharge areas is a critical step toward mitigating this load to the bays. Landsat 7 imagery was used to identify ground-water discharge areas in Indian River and Rehoboth and Indian River bays in Sussex County, Delaware. Panchromatic, near-infrared, and thermal bands were used to identify ice patterns and temperature differences in the surface water, which are indicative of ground-water discharge. Defining a shoreline specific to each image was critical in order to eliminate areas of the bays that were not representative of open water. Atmospheric correction was not necessary due to low humidity conditions during image acquisition. Ground-water discharge locations were identified on the north shore of Rehoboth Bay (west of the Lewes and Rehoboth Canal), Herring and Guinea creeks, the north shore of Indian River, and the north shore of Indian River Bay near Oak Orchard.

Number of Pages: 
17

RI49 Results of the Coastal Sussex County, Delaware Ground-Water Quality Survey

RI49 Results of the Coastal Sussex County, Delaware Ground-Water Quality Survey

The results of this investigation of the Columbia aquifer in coastal Sussex County, Delaware, provide some of the data necessary to evaluate the condition of the area's primary source of fresh water. Chemical analyses of water samples from domestic, agricultural, public, and monitoring wells document the effects of past and present land use practices. Groundwater flow paths and flow systems are inferred from flow-net analysis, ground-water chemistry, and isotopic composition.

RI43 Estimate of Direct Discharge of Fresh Ground Water to Rehoboth and Indian River Bays

RI43 Estimate of Direct Discharge of Fresh Ground Water to Rehoboth and Indian River Bays

The results of water-budget and flow-net model calculations indicate that the rate of fresh ground-water discharge into Rehoboth and Indian River bays is in the range of 21 to 43 million gallons per day. The estimates should be used only as gross indicators of actual conditions because of data gaps and the simplifying assumptions used in the models. However, the estimated discharge rates are significant and useful studies of the water budget of the Bays.

Delaware's Water Budget

In Delaware local rainfall, approximately 40" to 44" per year, renews part or all of our water supply on a regular basis. However, not all of the rain that falls is available for use.

B16 Ground-Water Resources of the Piney Point and Cheswold Aquifers in Central Delaware as Determined by a Flow Model

B16 Ground-Water Resources of the Piney Point and Cheswold Aquifers in Central Delaware as Determined by a Flow Model

A quasi three-dimensional model was constructed to simulate the response of the Piney Point and Cheswold aquifers underlying Kent County, Delaware to ground-water withdrawals. The model included the Magothy, Piney Point, Cheswold, and unconfined aquifers, and was calibrated using historical pumpage and water-level data. Model calibration was accomplished through the use of both steady-state and transient-state simulations.

B15 Digital Model of the Unconfined Aquifer in Central and Southeastern Delaware

B15 Digital Model of the Unconfined Aquifer in Central and Southeastern Delaware

The unconfined aquifer in central and southeastern Delaware occurs as a southward-thickening blanket of fine to coarse sand, and is recharged almost totally by precipitation and discharge is principally by seepage to streams, bays, and the ocean.

B8 Water Resources of Sussex County, Delaware

B8 Water Resources of Sussex County, Delaware

Sussex County is in the Atlantic Coastal Plain. Its relatively flat, featureless topography is characterized by two terrace-like surfaces; the lower one rises from sea level to about 40 feet above sea level, and the higher one rises inland from 40 to about 60 feet above sea level. Peculiar landforms of low relief, broad ovals, similar to the "Carolina bays," and to the "New Jersey basins" are common on the sandy flat divides in Sussex County. Hydrologically, they are sites of much ground-water discharge, by evapotranspiration, from meadow and marsh of lush vegetation.

Rapid infiltration basin systems -- research introduction

A. Scott Andres, senior scientist with the Delaware Geological Survey, presented "Rapid Infiltration Basin Systems -- Research Introduction" to the Delaware Clean Water Advisory Council on June 24 in Dover, Del.

DGS issues report on groundwater discharge areas

RI74 Locating Ground-Water Discharge Areas In Rehoboth And Indian River Bays And Indian River, Delaware Using Landsat 7 Imagery

The Delaware Geological Survey (DGS) at the University of Delaware has released a new technical report that identifies locations of groundwater discharge to estuaries and determines locations of discharge into the Inland Bays.