Quartz

OFR54 Bedrock Geologic Map of the Delaware Piedmont

The Piedmont rock units in Delaware, and bedrock geologic map of Schenck et al. (2000) are revised in this report based on new rock geochemistry, geochronometric data, petrography, and recent detailed mapping. Major revisions include:

OFR55 Delaware Geological Survey Petrographic Data Viewer

Petrography is a branch of geoscience focused on the description and classification of rocks, primarily by microscopic study of optical properties of minerals. A thin sliver of rock is cut from a sample, mounted on a glass slide, ground to approximately 30 microns (0.03mm), and viewed under a microscope that uses polarized light. By observing the colors produced as plain polarized light and crossed (90 degrees) polarized light shines through the minerals, petrologists can determine the minerals that comprise the sampled rock.

A.I.duPont Students see geology of the Delaware Piedmont

Date

William "Sandy" Schenck lead a field trip through the Delaware Piedmont for the A.I. duPont High School Earth Science Class. The trip made use of the Wilmington-Western Railroad and everyone rode the railroad's "Doodle Bug." Activities included up close examinations of rock and mineral features and even "Panning for Garnets" at Brandywine Springs Park.

Ironshire Formation

The Ironshire Formation was described by Owens and Denny (1979) as consisting of a lower loose, pale-yellow to white, well-sorted, medium sand characterized by long, low-angle inclined beds with laminae of black minerals. The upper portion of the units was described as consisting of light-colored, trough cross-stratified, well-sorted sand with pebbles and a few Callianassa borings. They described the Ironshire Formation near Rehoboth in a stratigraphic section which is now considered to be a part of the Lynch Heights Formation.

Biotite Tonalite

Fine- to medium-grained, equigranular biotite tonalite usually occurring as rounded boulders. Tonalites are leucocratic (15 to 25% modal mafic minerals), light gray to buff on fresh surfaces, and locally contain mafic enclaves with reddish rims, the result of iron hydroxide staining. Possibly intrusive into the Perkins Run Gabbronorite Suite.

RI72 Geology and Extent of the Confined Aquifers of Kent County, Delaware

Ground water comprises nearly all of the water supply in Kent County, Delaware. The confined aquifers of the area are an important part of this resource base. The aim of this study is to provide an up-to-date geologic framework for the confined aquifers of Kent County, with a focus on their stratigraphy and correlation. Seven confined aquifers are used for water supply in Kent County. All occur at progressively greater depths south-southeastward, paralleling the overall dip of the sedimentary section that underlies the state.

Setters Formation

In Delaware, predominantly an impure quartzite and garnet-sillimanite-biotite-microcline schist. Major minerals include microcline, quartz, and biotite with minor plagioclase, and garnet. Muscovite and sillimanite vary with metamorphic grade. Accessory minerals are iron-titanium oxides, zircon, sphene, and apatite. Microcline is an essential constituent of the quartzites and schists and serves to distinguish the Setters rocks from the plagioclase-rich schists and gneisses of the Wissahickon Formation.