Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Plagioclase"

Biotite Tonalite

Sbt

Fine- to medium-grained, equigranular biotite tonalite usually occurring as rounded boulders. Tonalites are leucocratic (15 to 25% modal mafic minerals), light gray to buff on fresh surfaces, and locally contain mafic enclaves with reddish rims, the result of iron hydroxide staining. Possibly intrusive into the Perkins Run Gabbronorite Suite.

Baltimore Gneiss

Pbgn

Granitic gneiss with swirling leucosomes and irregular biotite-rich restite layers is the dominant lithology and constitutes approximately 75 to 80 percent of the exposed rocks. The remaining 20 to 25 percent comprises hornblende-biotite gneiss, amphibolite with or without pyroxene, and pegmatite. Granitic gneiss is composed of quartz, plagioclase, biotite, and microcline. Minor and accessory minerals are garnet, muscovite, magnetite, ilmenite, sphene, apatite, and zircon. The hornblende gneiss contains plagioclase, quartz, hornblende, and biotite with/without orthopyroxene. Accessory minerals are garnet, muscovite, clinozoisite, perthitic orthoclase, iron-titanium oxides, sphene, and apatite. Amphibolites are composed of subequal amounts of hornblende and plagioclase with minor quartz, biotite, clinopyroxene, and orthopyroxene.

Setters Formation

Osq

In Delaware, predominantly an impure quartzite and garnet-sillimanite-biotite-microcline schist. Major minerals include microcline, quartz, and biotite with minor plagioclase, and garnet. Muscovite and sillimanite vary with metamorphic grade. Accessory minerals are iron-titanium oxides, zircon, sphene, and apatite. Microcline is an essential constituent of the quartzites and schists and serves to distinguish the Setters rocks from the plagioclase-rich schists and gneisses of the Wissahickon Formation.

Cockeysville Marble

Ocm

In Delaware, predominantly a pure, coarsely crystalline, blue-white dolomite marble interlayered with calc-schist. Major minerals in the marble include calcite and dolomite with phlogopite, diopside, olivine, and graphite. Major minerals in the calc-schist are calcite with phlogopite, microcline, diopside, tremolite, quartz, plagioclase, scapolite, and clinozoisite. Pegmatites and pure kaolin deposits and quartz occur locally.

Metapyroxenite and metagabbro (undifferentiated)

mpg

Light-colored coarse-grained rocks composed of interlocking grains of light colored, fibrous amphiboles, most likely magnesium-rich cummingtonite and/or anthophyllite with possible clinochlor. These rocks become finer grained and darker as hornblende replaces some of the Mg-rich amphiboles. Associated with the metapyroxenites are coarse-grained metamorphosed gabbros composed of hornblende and plagioclase. The metapyroxenites and metagabbros are probably cumulates.

Wissahickon Formation

Owf

Interlayered psammitic and pelitic gneiss with amphibolite. Psammitic gneiss is a medium- to fine-grained biotite-plagioclase-quartz gneiss with or without small garnets. Contacts with pelitic gneiss are gradational. Pelitic gneiss is medium- to coarse-grained garnet-sillimanite-biotite-plagioclase-quartz gneiss. Unit has a streaked or flasered appearance owing to the segregation of garnet-sillimanite-biotite stringers that surround lenses of quartz and feldspar. Throughout, layers of fine to medium-grained amphibolite composed of plagioclase and hornblende, several inches to <30 feet thick or as large massive bodies, are in sharp contact with the psammitic and pelitic gneisses. An attempt has been made to show some of the amphibolites mappable at the scale of the map. Granitic pegmatite is ubiquitous and occurs at all scales. Pyroxene bearing quartzite with garnet occurs locally near the contact with the Wilmington Complex. An ultramafic lens composed of cumulus layers of serpentinized peridotite, metapyroxenite, and metagabbro occurs near Hoopes Reservoir. The ultramafic lens may be correlative with the Baltimore Mafic Complex.

Windy Hills Gneiss

Owhg

Thinly interlayered, fine- to medium-grained hornblende-plagioclase amphibolite, biotite gneiss, and felsic gneiss, possibly metavolcanic. Felsic gneisses contain quartz and plagioclase with or without microcline with minor pyroxene and/or hornblende and/or biotite. Metamorphic grade in this unit decreases from granulite facies in the northeast to amphibolite facies toward the southwest. Correlated with the Big Elk Member of the James Run Formation in Cecil County, Maryland.

Faulkland Gneiss

Ofg

Predominantly fine- to coarse-grained amphibolites and quartz amphibolites with minor felsic rocks, probably metavolcanic. Major minerals are amphibole and plagioclase with or without pyroxene and/or quartz. Amphibole may be hornblende, cummingtonite, gedrite, and/or anthophyllite. Halos of plagioclase and quartz around porphyroblasts of magnetite, orthopyroxene, and garnet are common features.

Christianstead Gneiss

Ochg

Coarse-grained, foliated granodioritic gneiss. Major minerals are biotite, microcline, plagioclase, and quartz. Includes thin layers of fine-grained foliated amphibolite plus large pegmatites.

Barley Mill Gneiss

Obmg

Coarse-grained, foliated tonalite gneiss. Major minerals are biotite, hornblende, plagioclase, and quartz. Includes mafic enclaves or layers composed of subequal amounts of hornblende and plagioclase. Also includes a coarse-grained granitic lithology composed of biotite, microcline, plagioclase, and quartz.

Montchanin Metagabbro

Omm

Coarse-grained gabbroic and metagabbroic rocks, variably metamorphosed and deformed. Primary igneous minerals include olivine, clinopyroxene, orthopyroxene, and plagioclase.

Mill Creek Metagabbro

Omcm

Coarse-grained gabbroic and metagabbroic rocks, variably metamorphosed and deformed. Primary minerals are hornblende and plagioclase.

Rockford Park Gneiss

Orpg

Fine-grained mafic and fine- to medium-grained felsic gneisses interlayered on the decimeter scale. Layers are laterally continuous, but mafic layers commonly show boudinage. Felsic layers are composed of quartz and plagioclase with < 10 modal percent pyroxene. Mafic layers contain subequal amounts of plagioclase, pyroxene, and hornblende. Penetrative deformation and granulite facies metamorphism have obscured igneous fabrics and contact relationships.

Brandywine Blue Gneiss

Obbg

Medium to coarse grained granulites and gneisses composed of plagioclase, quartz, orthopyroxene, clinopyroxene, brown-green hornblende, magnetite, and ilmenite. Mafic minerals vary from < 5-30 modal percent. A lineation due to a preferred orientation of quartz and mafic minerals is obvious on weathered surfaces. Unit contains thin, discontinuous fine-grained mafic layers.

Perkins Run Gabbronorite Suite

Spgs

Fine- to coarse-grained gabbronorite and minor diorite with subophitic to ophitic textures, variably foliated or lineated. Plagioclase, orthopyroxene, clinopyroxene, and hornblende are major minerals; biotite and olivine locally present. Olivine typically surrounded by corona structures as described for the Bringhurst Gabbro. Contemporaneous with the Ardentown Granitic Suite.

Bringhurst Gabbro

Sbg

Coarse- to very coarse-grained gabbronoite with subophitic textures. Primary minerals are plagioclase, olivine, clinopyroxene and orthopyroxene. Olivine, where present, is surrounded by an inner corona of orthopyroxene and an outer corona of pargasitic hornblende, both with spinel symplectites. The gabbronorites locally contain abundant xenoliths of mafic Brandywine Blue Gneiss.

Iron Hill Gabbro

Sihg

Black to very dark green, coarse- to very coarse-grained, uralitized olivine-hypersthene gabbronorite and pyroxenite with subophitic textures. Primary minerals are calcic plagioclase, orthopyroxene, clinopyroxene, and olivine. Amphibole is secondary, a pale blue-green actinolite. Olivine, when present, is surrounded by coronas similar to those in the Bringhurst Gabbro. The gabbronorite is deeply weathered leaving a layer of iron oxides, limonite, goethite, and hematite, mixed with ferruginous jasper. The jasper contains thin seams lined with drusy quartz. Contacts with the Christianstead Gneiss are covered with sediments of the Coastal Plain.

The Bringhurst Gabbro: A GeoAdventure in the Delaware Piedmont

Bringhurst Woods Park Rocks, The Bringhurst Gabbro

A field trip to Bringhurst Woods Park is appropriate for students in grades 5 and up (10 years and older), and provides an opportunity to observe intrusive plutonic igneous rocks that have intruded into country rock, which in this case is the blue rock or what geologists call the Brandywine Blue Gneiss. In addition, the minerals in the pluton are large, easily identified, and interesting. Mineral collecting is not allowed within the park, however permission may be obtained to collect along Shellpot Creek southeast of the park. Please do not use rock hammers on the rocks in the park.