Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Hematite"

B20 Stratigraphy of the Post-Potomac Cretaceous-Tertiary Rocks of Central Delaware

B20 Stratigraphy of the Post-Potomac Cretaceous-Tertiary Rocks of Central Delaware

This Bulletin presents the subsurface stratigraphy of the post-Potomac Cretaceous and Tertiary rocks of the Atlantic Coastal Plain of central Delaware, between the Chesapeake and Delaware (C & D) Canal and Dover. Geophysical log correlations supported by biostratigraphic and lithologic data from boreholes in Delaware and nearby New Jersey provide the basis for the report. The stratigraphic framework presented here is important for identifying subsurface stratigraphic units penetrated by the numerous boreholes in this part of Delaware, particularly those rock units that serve as aquifers, because such knowledge allows for better prediction at ground-water movement and availability. Also, accurate stratigraphy is a prerequisite for interpreting the geologic history of the rocks and for the construction of maps that depict the structure and thickness of each unit.

B5 Sedimentary Petrology of the Cretaceous Sediments of Northern Delaware in Relation to Paleogeographic Problems

B5 Sedimentary Petrology of the Cretaceous Sediments of Northern Delaware in Relation to Paleogeographic Problems

The non-marine Cretaceous sediments of northern Delaware older than the Magothy formation cannot be divided accurately into formations or mappable geologic units because their lithologic characteristics are very similar. However, two heavy mineral zones can be distinguished in these deposits: a lower staurolite-kyanite-tourmaline-zircon zone, and an upper tourmaline-zircon-rutile zone with abundant alterites. They have been named the Patuxent zone and the Patapsco-Raritan zone respectively. The Magothy formation is characterized by abundant staurolite and also contains significant amounts of tourmaline. The marine Upper Cretaceous deposits have a greater variety of heavy minerals than the underlying non-marine sediments. They contain abundant epidote; chloritoid, first appearing at the base of the Merchantville formation, is persistently present. Garnet is found in the Merchantville and the Mount Laurel-Navesink formations. The heavy mineral composition of the Cretaceous sediments is shown in table IV.