Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Feldspar"

Ironshire Formation

Qi

The Ironshire Formation was described by Owens and Denny (1979) as consisting of a lower loose, pale-yellow to white, well-sorted, medium sand characterized by long, low-angle inclined beds with laminae of black minerals. The upper portion of the units was described as consisting of light-colored, trough cross-stratified, well-sorted sand with pebbles and a few Callianassa borings. They described the Ironshire Formation near Rehoboth in a stratigraphic section which is now considered to be a part of the Lynch Heights Formation.

Common Rocks and Minerals of the Delaware Piedmont

The Red Clay Creek has flowed through the rolling hills of northern Delaware for many thousands of years, cutting a deep valley into the old deformed rocks of the Appalachian Piedmont. The Red Clay valley contains many of the common rocks found throughout the Delaware Piedmont.

Wissahickon Formation

Owf

Interlayered psammitic and pelitic gneiss with amphibolite. Psammitic gneiss is a medium- to fine-grained biotite-plagioclase-quartz gneiss with or without small garnets. Contacts with pelitic gneiss are gradational. Pelitic gneiss is medium- to coarse-grained garnet-sillimanite-biotite-plagioclase-quartz gneiss. Unit has a streaked or flasered appearance owing to the segregation of garnet-sillimanite-biotite stringers that surround lenses of quartz and feldspar. Throughout, layers of fine to medium-grained amphibolite composed of plagioclase and hornblende, several inches to <30 feet thick or as large massive bodies, are in sharp contact with the psammitic and pelitic gneisses. An attempt has been made to show some of the amphibolites mappable at the scale of the map. Granitic pegmatite is ubiquitous and occurs at all scales. Pyroxene bearing quartzite with garnet occurs locally near the contact with the Wilmington Complex. An ultramafic lens composed of cumulus layers of serpentinized peridotite, metapyroxenite, and metagabbro occurs near Hoopes Reservoir. The ultramafic lens may be correlative with the Baltimore Mafic Complex.

Ardentown Granitic Suite

Sags

Medium- to coarse-grained granitic rocks containing primary orthopyroxene and clinopyroxene; includes quartz norites, quartz monzonorites, opdalites, and charnockites. Feldspar phenocrysts common. Mafic enclaves locally abundant in proximity to gabbronorites.

Lynch Heights Formation

Qlh

Heterogeneous unit of light-gray to brown to light-yellowish brown, medium to fine sand with discontinuous beds of coarse sand, gravel, silt, fine to very fine sand, and organic-rich clayey silt to silty sand. Upper part of the unit commonly consists of fine, well-sorted sand. Small-scale cross-bedding within the sands is common. Some of the interbedded clayey silts and silty sands are burrowed. Beds of shell are rarely encountered. Sands are quartzose and slightly feldspathic, and typically micaceous where very fine to fine grained. Unit underlies a terrace parallel to the present Delaware Bay that has elevations between 50 and 30 feet. Interpreted to be a fluvial to estuarine unit of fluvial channel, tidal flat, tidal channel, beach, and bay deposits (Ramsey, 1997). Overall thickness ranges up to 50 feet.

B20 Stratigraphy of the Post-Potomac Cretaceous-Tertiary Rocks of Central Delaware

B20 Stratigraphy of the Post-Potomac Cretaceous-Tertiary Rocks of Central Delaware

This Bulletin presents the subsurface stratigraphy of the post-Potomac Cretaceous and Tertiary rocks of the Atlantic Coastal Plain of central Delaware, between the Chesapeake and Delaware (C & D) Canal and Dover. Geophysical log correlations supported by biostratigraphic and lithologic data from boreholes in Delaware and nearby New Jersey provide the basis for the report. The stratigraphic framework presented here is important for identifying subsurface stratigraphic units penetrated by the numerous boreholes in this part of Delaware, particularly those rock units that serve as aquifers, because such knowledge allows for better prediction at ground-water movement and availability. Also, accurate stratigraphy is a prerequisite for interpreting the geologic history of the rocks and for the construction of maps that depict the structure and thickness of each unit.