Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Andalusite (Chiastolite)"

Deal Formation

Td

It is a clayey, calcareous, shelly, glauconitic (10-20 percent) silt. Its colors range from greenish-gray and gray-green to brownish-gray and light gray. It is rich in calcareous and siliceous microfossils. The matrix mineralogy shows a high calcite component, except in the lower part of the formation which is within a calcite dissolution interval. In the lower half of the formation quartz is predominant.

B5 Sedimentary Petrology of the Cretaceous Sediments of Northern Delaware in Relation to Paleogeographic Problems

B5 Sedimentary Petrology of the Cretaceous Sediments of Northern Delaware in Relation to Paleogeographic Problems

The non-marine Cretaceous sediments of northern Delaware older than the Magothy formation cannot be divided accurately into formations or mappable geologic units because their lithologic characteristics are very similar. However, two heavy mineral zones can be distinguished in these deposits: a lower staurolite-kyanite-tourmaline-zircon zone, and an upper tourmaline-zircon-rutile zone with abundant alterites. They have been named the Patuxent zone and the Patapsco-Raritan zone respectively. The Magothy formation is characterized by abundant staurolite and also contains significant amounts of tourmaline. The marine Upper Cretaceous deposits have a greater variety of heavy minerals than the underlying non-marine sediments. They contain abundant epidote; chloritoid, first appearing at the base of the Merchantville formation, is persistently present. Garnet is found in the Merchantville and the Mount Laurel-Navesink formations. The heavy mineral composition of the Cretaceous sediments is shown in table IV.