Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "wetlands"

Protecting tidal wetlands - UD scientists study tidal flow, sediment movement in Kent salt marsh

Three University of Delaware scientists are studying tidal water flow and sediment movement in a Kent County salt marsh to better understand changes to the marsh ecosystem due to a rising sea level.

Gauging sea-level rise in marshes

Gauging sea-level rise in marshes

Global sea-level rise and sinking land are combining to cause water levels near Bowers Beach, Del., to climb at a rate faster than anywhere else on the Atlantic coast. Surrounding wetlands may change into mudflats if wetland elevation cannot keep pace with rising sea level. Sea Grant researchers Jack Puleo and Thomas McKenna are conducting field research in Kent County to increase our understanding of how marshes respond to sea-level rise. The work could help natural resource managers monitor marsh stability and predict future changes.

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 16 (Fairmount and Rehoboth Beach quadrangles). The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

To facilitate the GIS community of Delaware and to release the geologic map of the Fairmount and Rehoboth Beach quadrangles with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 16. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

GM16 Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware

GM16 Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware

The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

A Coastal Flood Monitoring System for Delaware

Flooding at Kitts Hummock after the Mother's Day Storm 2008
Project Contact(s):

During the last two decades, storms such as Hurricanes Katrina and Ike along the Gulf of Mexico and Floyd and Hugo along the Atlantic Coast of the United States have resulted in significant loss of life, injuries, and property damages exceeding well over 100 billion dollars. Much of the damage associated with these and other tropical and extra-tropical weather systems is associated with severe coastal flooding. The purpose of this project is to develop a real-time coastal flood monitoring and warning system for the coastal communities in Kent County, Delaware. This system will serve as a prototype for similar early-warning systems, which may then be applied along the entire Delaware coast.

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 15 (Geologic Map of the Georgetown Quadrangle, Delaware). The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit but is thought to be between late Pliocene to early Pleistocene in age. Refer to Ramsey, 2010 (DGS Report of Investigations No. 76) for details regarding the stratigraphic units.

To facilitate the GIS community of Delaware and to release the geologic map of the Georgetown Quadrangle with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 15. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit. Stratigraphic relationships in Delaware indicate that it is no older than late Miocene and no younger than early Pleistocene. Regional correlations based on similarities of depositional style, stratigraphic position, and sediment textures suggest that it is likely late Pliocene in age; correlative with the Bacons Castle Formation of Virginia (Ramsey, 1992, 2010).

Digital Water-Table Data for New Castle County, Delaware (Digial Data Product No. 05-04)

Digital Water-Table Data for New Castle County, Delaware

This digital product contains gridded estimates of water-table (wt) elevation and depth to water (dtw) under dry, normal, and wet conditions for New Castle County, Delaware excluding the Piedmont. Files containing the point data used to create the grids are also included. This work is the final component of a larger effort to provide estimates of water-table elevations and depths to water for the Coastal Plain portion of Delaware. Mapping was supported by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

These grids were produced with the same multiple linear regression (MLR) method as Andres and Martin (2005). Briefly, this method consists of: identifying dry, normal, and wet periods from long-term observation well data (Db24-01, Hb14-01); estimating a minimum water table (Sepulveda, 2002) by fitting a localized polynomial surface to elevations of surface water features (e.g., streams, swamps, and marshes); and, computing a second variable in the regression from water levels observed in wells. Separate MLR equations were determined for dry, normal, and wet periods and these equations were used in ArcMap v.9 (ESRI, 2004) to estimate grids of water-table elevations and depths to water. New Castle County was divided into a northern section and a southern section with the C&D Canal being the natural line of demarcation. A minimum water-table surface was then calculated for both the northern and southern sections of New Castle County. However, dividing the county, as well as the water-level data, into two sections did not result in sufficient regression coefficients for use in the estimation process. Therefore, the data (minimum water-table surface and water-level data) were merged together and the water-table elevation and depth to water grids for dry, normal, and wet conditions were then calculated for the county as a whole.

Digital Water-Table Data for Kent County, Delaware (Digital Data Product No. 05-03)

Digital Water-Table Data for Kent County, Delaware

This digital product contains gridded estimates of water-table (wt) elevation and depth to water (dtw) under dry, normal, and wet conditions for Kent County, Delaware. Files containing the point data used to create the grids are also included. This work is the final component of a larger effort to provide estimates of water-table elevations and depths to water for the Coastal Plain portion of Delaware. Mapping was supported by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

These grids were produced with the same multiple linear regression (MLR) method as Andres and Martin (2005). Briefly, this method consists of: identifying dry, normal, and wet periods from long-term observation well data (Hb14-01, Jd42-03, Mc51-01, Md22-01); estimating a minimum water table (Sepulveda, 2002) by fitting a localized polynomial surface to elevations of surface water features (e.g., streams, swamps, and marshes); and, computing a second variable in the regression from water levels observed in wells. A separate MLR equation was determined for dry, normal, and wet periods and these equations were used in ArcMap v.9 (ESRI, 2004) to estimate grids of water-table elevations and depths to water. Kent County was divided into three regions (south, central, north). A minimum water-table surface was calculated for each of these areas and were merged together to create a single minimum water-table surface for the entire county. This grid was filtered and smoothed to eliminate edge effects that occurred at the boundaries between each of the three regions. Water-table elevation and depth to water grids for dry, normal, and wet conditions were then calculated for the county as a whole.

Digital Water-Table Data for Sussex County, Delaware (Digital Data Product No. 05-01)

Digital Water-Table Data for Sussex County, Delaware

This digital product contains gridded estimates of water-table (wt) elevation and depth to water (dtw) under dry, normal, and wet conditions for Sussex County, Delaware. Files containing the point data used to create the grids are also included. This work is the final component of a larger effort to provide estimates of water-table elevations and depths to water for the Coastal Plain portion of Delaware. Mapping was supported by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

These grids were produced with the same multiple linear regression (MLR) method as Andres and Martin (2005). Briefly, this method consists of: identifying dry, normal, and wet periods from long-term observation well data (Nc45-01, Ng11-01, Qe44-01); estimating a minimum water table (Sepulveda, 2002) by fitting a localized polynomial surface to elevations of surface water features (e.g., streams, swamps, and marshes); and computing a second variable in the regression from water levels observed in wells. A separate MLR equation was determined for dry, normal, and wet periods, and these equations were used in ArcMap v.9 (ESRI, 2004) to estimate grids of water-table elevations and depths to water. Grids produced in this project were merged with those previously completed for eastern Sussex and smoothed to minimize edge effects.

RI68 Estimation of the Water Table for the Inland Bays Watershed, Delaware

RI68 Estimation of the Water Table for the Inland Bays Watershed, Delaware

A geographic information system-based study was used to estimate the elevation of the water table in the Inland Bays watershed of Sussex County, Delaware, under dry, normal, and wet conditions. Evaluation of the results from multiple estimation methods indicates that a multiple linear regression method is the most viable tool to estimate the elevation of the regional water table for the Coastal Plain of Delaware. The variables used in the regression are elevation of a minimum water table and depth to the minimum water table from land surface. Minimum water table is computed from a local polynomial regression of elevations of surface water features. Correlation coefficients from the multiple linear regression estimation account for more than 90 percent of the variability observed in ground-water level data. The estimated water table is output as a GIS-ready grid with 30-m (98.43 ft) horizontal and 0.305-m (1 ft) vertical resolutions.

RI64 Results of Hydrogeologic Studies of the Cypress Swamp Formation, Delaware

RI64 Results of Hydrogeologic Studies of the Cypress Swamp Formation, Delaware

The Cypress Swamp Formation is the surficial geologic unit in south-central Sussex County, Delaware. Detailed hydrologic observations made as part of four separate studies between 1995 and 1999 show that the Cypress Swamp Formation consists of a complex assemblage of moderately permeable sands and low permeability organic and inorganic silts and clays that form a heterogeneous shallow subsurface hydrologic system that is between about 5 and 15 feet thick. Aquifer tests show that hydraulic conductivity ranges between 0.55 and 40 ft/day, with an arithmetic mean of 13 feet/day.

RI62 The Cypress Swamp Formation, Delaware

RI62 The Cypress Swamp Formation, Delaware

The Cypress Swamp of Sussex County, Delaware, is underlain by a body of late Pleistocene- to Holocene-age unconsolidated sediments. They form a mappable geologic unit herein named the Cypress Swamp Formation. Deposits of the formation can be found outside the current boundaries of the Cypress Swamp and record the erosion and redistribution of older Pleistocene coastal and Pliocene sedimentary units.

RI55 Geology of the Milford and Mispillion River Quadrangles

RI55 Geology of the Milford and Mispillion River Quadrangles

Investigation of the Neogene and Quaternary geology of the Milford and Mispillion River quadrangles has identified six formations: the Calvert, Choptank, and St. Marys formations of the Chesapeake Group, the Columbia Formation, and the Lynch Heights and Scotts Comers formations of the Delaware Bay Group. Stream, swamp, marsh, shoreline, and estuarine and bay deposits of Holocene age are also recognized. The Calvert, Choptank, and St. Marys formations were deposited in inner shelf marine environments during the early to late Miocene. The Columbia Formation is of fluvial origin and was deposited during the middle Pleistocene prior to the erosion and deposition associated with the formation of the Lynch Heights Formation. The Lynch Heights Formation is of fluvial and estuarine origin and is of middle Pleistocene age. The Scotts Corners Formation was deposited in tidal, nearshore, and estuarine environments and is of late Pleistocene age. The Scotts Corners Formation and the Lynch Heights Formation are each interpreted to have been deposited during more than one cycle of sea-level rise and fall. Latest Pleistocene and Holocene deposition has occurred over the last 11,000 years.

RI53 Geology of the Seaford Area, Delaware

RI53 Geology of the Seaford Area, Delaware

This report supplements the map "Geology of the Seaford Area, Delaware" (Andres and Ramsey, 1995). The map portrays surficial and shallow subsurface stratigraphy and geology in and around the Seaford East and Delaware portion of the Seaford West quadrangles. The Quaternary Nanticoke deposits and Pliocene Beaverdam Formation are the primary lithostratigraphic units covering upland surfaces in the map area. Recent swamp, alluvial, and marsh deposits cover most of the floodplains of modern streams and creeks. The Miocene Choptank, St. Marys, and Manokin formations occur in the shallow subsurface within 300 ft of land surface. The Choptank, St. Marys, and Manokin formations were deposited in progressively shallower water marine environments. The Beaverdam Formation records incision of underlying units and progradation of a fluvial-deltaic system into the map area. The geologic history of the Quaternary is marked by weathering and erosion of the surface of the Beaverdam and deposition of the Nanticoke deposits by the ancestral Nanticoke River. Depositional environments in the Nanticoke deposits include fresh water streams and ponds, estuarine streams and lagoons, and subaerial dunes.

RI73 Analysis and Summary of Water-Table Maps for the Delaware Coastal Plain

RI73  Analysis and Summary of Water-Table Maps for the Delaware Coastal Plain

A multiple linear regression method was used to estimate water-table elevations under dry, normal, and wet conditions for the Coastal Plain of Delaware. The variables used in the regression are elevation of an initial water table and depth to the initial water table from land surface. The initial water table is computed from a local polynomial regression of elevations of surface-water features. Correlation coefficients from the multiple linear regression estimation account for more than 90 percent of the variability observed in ground-water level data. The estimated water table is presented in raster format as GIS-ready grids with 30-m horizontal (~98 ft) and 0.305-m (1 ft) vertical resolutions. Water-table elevation and depth are key facets in many engineering, hydrogeologic, and environmental management and regulatory decisions. Depth to water is an important factor in risk assessments, site assessments, evaluation of permit compliance data, registration of pesticides, and determining acceptable pesticide application rates. Water-table elevations are used to compute ground-water flow directions and, along with information about aquifer properties (e.g., hydraulic conductivity and porosity), are used to compute ground-water flow velocities. Therefore, obtaining an accurate representation of the water table is also crucial to the success of many hydrologic modeling efforts. Water-table elevations can also be estimated from simple linear regression on elevations of either land surface or initial water table. The goodness-of-fits of elevations estimated from these surfaces are similar to that of multiple linear regression. Visual analysis of the distributions of the differences between observed and estimated water elevations (residuals) shows that the multiple linear regression-derived surfaces better fit observations than do surfaces estimated by simple linear regression.

Characterization of Tidal Wetland Inundation in the Murderkill River Estuary

Webbs Marsh, Murderkill River Estuary
Project Contact(s):

The project supports work by the Kent County Levy Court (Kent County) to evaluate the nutrient TMDLS for the tidal portion of the Murderkill River. The project will contribute to a more robust parameterization of river-marsh interaction in the water-quality model that is being developed for the Murderkill River by Kent County. The purpose of the project is to characterize the spatial and temporal inundation of a salt marsh in the Murderkill River Estuary and to determine the feasibility of using heat as a tracer of flow to characterize inundation of other marshes in the estuary.

OFR47 Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River

OFR47 Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River

Digital watershed and bay polygons for use in geographic information systems were created for Rehoboth Bay, Indian River, and Indian River Bay in southeastern Delaware. Polygons were created using a hierarchical classification scheme and a consistent, documented methodology that enables unambiguous calculations of watershed and bay surface areas within a geographic information system. The watershed boundaries were delineated on 1:24,000-scale topographic maps. The resultant polygons represent the entire watersheds for these water bodies, with four hierarchical levels based on surface area. Bay boundaries were delineated by adding attributes to existing polygons representing water and marsh in U.S. Geological Survey Digital Line Graphs of 1:24,000-scale topographic maps and by dissolving the boundaries between polygons with similar attributes. The hierarchy of bays incorporates three different definitions of the coastline: the boundary between open water and land, a simplified version of that boundary, and the upland-lowland boundary. The polygon layers are supplied in a geodatabase format.

OFR44 Storm-Water and Base-Flow Sampling and Analysis in the Delaware Inland Bays Preliminary Report of Findings 1998-2000

OFR44 Storm-Water and Base-Flow Sampling and Analysis in the Delaware Inland Bays Preliminary Report of Findings 1998-2000

This report provides initial research results of a storm-water and base-flow sampling and analysis project conducted by the University of Delaware College of Marine Studies (CMS) and the Delaware Geological Survey (DGS). Base-flow samples were collected from six tributary watersheds of Delaware’s Inland Bays on 29 occasions from October 1998 to May 2000. Water samples were filtered in the field to separate dissolved nutrients for subsequent analysis, and a separate sample was collected and returned to the laboratory for particulate nutrient determinations. On each sampling date, temperature, conductivity, pH, and dissolved oxygen concentrations were determined at each sampling station. Stream discharge measurements at each of these sites were made by the U.S. Geological Survey (USGS) under a joint-funded agreement with the Delaware Department of Natural Resources and Environmental Control (DNREC) and the DGS. Together, the nutrient and discharge data were used to determine the total and unit (normalized to watershed area) nutrient loading from base flow to the Inland Bays from each of these watersheds on a quarterly and annual basis. At the same six stations, storm water was collected during eight storms from May 1999 to April 2000. Storm-water loadings of nutrients from each watershed were calculated from the concentrations of nutrients in water samples collected at fixed time intervals from the beginning of the storm-water discharge period until recession to base flow. These data provide DNREC with a more complete picture of the seasonal dependence of nutrient loading to the Bays from which to establish goals for total maximum daily loads in the Inland Bays watershed.

SP27 Water Table in the Inland Bays Watershed, Delaware

SP27 Water Table in the Inland Bays Watershed, Delaware

This poster shows three different map views of the water table as well as information about how the maps were made, how the depth to water table changes with seasons and climate, and how the water table affects use and disposal of water. The map views are of depth to the water table, water-table elevation (similar to topography), and water-table gradient (related to water flow velocity).