Share

DGS Annual Report

DGS Annual Report of Programs and Activities.

Click here to download!

Site content related to keyword: "wells"

B8 Water Resources of Sussex County, Delaware

B8 Water Resources of Sussex County, Delaware

Sussex County is in the Atlantic Coastal Plain. Its relatively flat, featureless topography is characterized by two terrace-like surfaces; the lower one rises from sea level to about 40 feet above sea level, and the higher one rises inland from 40 to about 60 feet above sea level. Peculiar landforms of low relief, broad ovals, similar to the "Carolina bays," and to the "New Jersey basins" are common on the sandy flat divides in Sussex County. Hydrologically, they are sites of much ground-water discharge, by evapotranspiration, from meadow and marsh of lush vegetation.

RI31 Hydrocarbon Resource Potential of the Baltimore Canyon Trough

RI31 Hydrocarbon Resource Potential of the Baltimore Canyon Trough

It is now possible to evaluate some of the earlier assessments and offer tentative conclusions about the hydrocarbon resource potential of the Baltimore Canyon trough, a major northeast-southwest trending sedimentary basin off the Mid-Atlantic coast of the United States. For this purpose the Delaware Geological Survey has examined more than 2,500 miles (4,022 km) of seismic reflection profiles, the results of some offshore magnetic and gravity surveys, the results of the COST B-2 well, and the nonproprietary results through 1978 of exploratory drilling by the petroleum industry on federal leases.

RI30 Ground-Water Levels in Delaware July, 1966 - December, 1977

RI30 Ground-Water Levels in Delaware July, 1966 - December, 1977

Water-level records from 13 observation wells in Delaware for the period July, 1966 - December, 1977 provide the bases for the analyses of water-level fluctuations. Water levels in shallow water-table wells generally rise from November to March, when recharge exceeds discharge, and decline during the warm growing season from May through September. Although water-levels in individual wells changed by as much as 11.17 feet during the 11.5 year period studied, the water-table system remained in a state of dynamic equilibrium and exhibited no permanent changes in aquifer storage. However, the water levels in three artesian observation wells have declined during the same 11.5 year period in response to high demands for ground water while levels in the other two artesian wells have risen slightly due to a reduction in ground-water discharge, or increase in ground-water recharge, or both. Nevertheless during the past several decades, water levels have declined, cones of depression have enlarged, and reductions in aquifer storage, have occurred in the Potomac aquifer in central and southeastern New Castle County, and the Piney Point and Cheswold aquifers in the Dover-Dover Air Force Base area. Therefore, future groundwater development in the artesian aquifers must be carefully planned and managed.

RI27 Ground-Water Investigations in the Delaware Piedmont for the City of Newark, 1976

RI27 Ground-Water Investigations in the Delaware Piedmont for the City of Newark, 1976

Field reconnaissance, geologic mapping, and photogeologic interpretations aided collectively in the identification of 30 potential high-yield well sites in the crystalline rocks of Delaware's western Piedmont. Fracture traces discernable on panchromatic and color infrared photography were identified in the study area. Well locations were selected on individual traces and on fracture trace intersections. Six test wells averaging 468.5 feet in depth were drilled at selected sites. Test analyses indicate that production wells at these sites would have a combined potential estimated at 1.0 to 1.1 million gallons per day of water. A thorough knowledge of the hydrogeologic framework is key to successful ground-water exploration and development. Subsurface fracturing is of prime importance in governing the water-yielding properties in the crystalline rocks. The surface traces of vertical or near-vertical zones of subsurface rock fracture were identified and used as an aid in high-capacity well siting.

SP17 The Delaware Geological Survey: The Formative Years, 1951-1969

SP17 The Delaware Geological Survey: The Formative Years, 1951-1969

Emphasis is placed herein on the years of Dr. Groot's leadership of the Survey. The remarkable work of James C. Booth in the last century is acknowledged but has elsewhere been entered in history. Some continuing activities of the Survey after 1969 are noted together with comments of an experienced observer; this current period may someday receive the attention of a recorder having the enhanced perspective of time.

The Geology of Delaware

The Geology of Delaware is an online resource for information about the geology and hydrogeology of Delaware. Information on these pages is explained in general terms although common geologic terminology is used. This book covers the major important factors in Delaware geology as well as latest research. Additional information is provided at the bottom of some pages and on the last page of the book, More Information.

RI18 Geology and Ground Water, University of Delaware, Newark, Delaware

RI18 Geology and Ground Water, University of Delaware, Newark, Delaware

The results of an intensive ground-water study on University of Delaware lands in the Newark area revealed additional sources of available ground water. Geophysical techniques, air-photo interpretation, studies of existing data, field mapping, test drilling, and pump tests were used as the bases for guiding additional well development. The study, conducted by the Delaware Geological Survey, was a cooperative effort between the University of Delaware and the City of Newark in response to mutual water supply problems. A potential ground-water yield of about 500 gpm was discovered on the University Laird Tract in the Piedmont Province. Ground water available from other locations in the Coastal Plain portion of the study area may total about 175 gpm. However, careful well development and proper well spacing will be necessary to obtain optimum yields.

RI9 Ground-Water Levels in Delaware January, 1962 - June, 1966

RI9 Ground-Water Levels in Delaware January, 1962 - June, 1966

This report deals with fluctuations in nine observation wells during the period 1960 - 1966. These wells are part of a state-wide ground-water monitoring network and are located in areas of little or no pumping. Eight of the wells respond to water-table conditions; the ninth well appears to reflect artesian conditions.
Although precipitation throughout Delaware was generally below average during the period covered by this report, annual average water levels declined very little in the wells reported on here. There is some evidence, however, for a lowering of water-table levels by three to four feet during the period 1960 - 1962.

RI2 High-Capacity Test Well Developed at the Air Force Base, Dover, Delaware

RI2 High-Capacity Test Well Developed at the Air Force Base, Dover, Delaware

A thick aquifer of Eocene age underlies the Dover area, Delaware at depths ranging from 250 to 400 feet below the land surface. The aquifer is about 250 feet thick beneath the Dover Air Force Base and is composed of fairly uniform medium to fine glauconitic quartz sand. The static water level in a test well at the base was 18 feet below the land surface, or 5.7 feet above sea level, on April 17, 1957. The yield of the test well was about 300 gpm (gallons per minute), and the specific capacity at the end of a 12-hour pumping period was 8.3 gpm per foot of drawdown.