Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "water use"

DGS issues report on groundwater modeling in southern New Castle County

The Delaware Geological Survey (DGS) released a new technical report entitled Simulation of Groundwater Flow in Southern New Castle County, Delaware, which was prepared by Changming He and A. Scott Andres of the DGS.

DGS Report of Investigations No. 77 is a preliminary step in developing a detailed understanding of the subsurface hydrology and evaluating groundwater availability in major aquifer systems beneath southern New Castle County and parts of northern Kent County, which are expected to have greater demands for groundwater in the next 20 years due to population growth.

Wastewater Reuse: Benefits and Risk Assessment in Inland Bays Indian River Basin

Study domain
Project Contact(s):

The goal of this project is to develop a three-dimensional (3D) numerical groundwater flow model to evaluate the potential impacts to surface- and groundwater resulting from the disposal of treated wastewater in a portion of the Inland Bays drainage basin.

By developing a sub-regional, fresh, groundwater flow model and analyzing results, several issues will be addressed that are related to state policy, regulation revision, and proposed projects associated with land-based wastewater disposal (LBWD) in Sussex County.

Presentation on groundwater availability

John Talley, of the Delaware Geological Survey, made a presentation titled “Groundwater Availability, Trends in Water Use, and Potential Conflicts” at the Pickle Packers International spring meeting, Philadelphia, April 15.

This page tagged with:

Groundwater Resources of Sussex County (with an update for Kent County)

Project Contact(s):

This project is an integrated geologic/hydrologic study that will update our knowledge of the unconfined aquifers, confined aquifers, and groundwater resources of Sussex County. In addition, this project will utilize the results of recently completed study of the aquifer geology of Kent County (McLaughlin and Velez, 2005) to better define the groundwater resources of Kent County. The products to be produced by this study include aquifer depth and thickness maps and geologic cross sections for Sussex County. Products will also include a summary of basic hydrologic characteristics of aquifers in Kent and Sussex County and an analysis of water use for each aquifer.

B16 Ground-Water Resources of the Piney Point and Cheswold Aquifers in Central Delaware as Determined by a Flow Model

B16 Ground-Water Resources of the Piney Point and Cheswold Aquifers in Central Delaware as Determined by a Flow Model

A quasi three-dimensional model was constructed to simulate the response of the Piney Point and Cheswold aquifers underlying Kent County, Delaware to ground-water withdrawals. The model included the Magothy, Piney Point, Cheswold, and unconfined aquifers, and was calibrated using historical pumpage and water-level data. Model calibration was accomplished through the use of both steady-state and transient-state simulations.

B11 Ground-Water Resources of Southern New Castle County Delaware

B11 Ground-Water Resources of Southern New Castle County Delaware

Southern New Castle County has a land area of 190 square miles in north-central Delaware. It is predominantly a rural area with a population of about 9,000 people who are engaged chiefly in agriculture. By and large, the residents are dependent upon ground water as a source of potable water. This investigation was made to provide knowledge of the availability and quality of the ground-water supply to aid future development. The climate, surface features, and geology of the area are favorable for the occurrence of ground water. Temperatures are generally mild and precipitation is normally abundant and fairly evenly distributed throughout the year. The topography of the area is relatively flat and, hence, the streams have low gradients. The surface is underlain to a considerable depth by highly permeable unconsolidated sediments that range in age from Early Cretaceous to Recent.