Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "topography"

The Delaware DataMIL is Retired

The Delaware DataMIL, an online web mapping application that has provided accurate, up-to-date Delaware Geospatial Framework (basemap layers), current and historic aerial photography, and topographic maps for Delaware since 2002 is retired as of June 30, 2013. Originally built as a state of the art, crowd source editing and map delivery system and pilot project for the US Geological Survey National Map, the DataMIL is being replaced by newer mapping technology through the Department of Technology and Information (DTI) which will have a new system in place shortly.

Highest point in Delaware

Ebright Azimuth - The Highest Monumented Point in Delaware

For many years, there has been a question in the minds of some Delawareans as to whether Delaware's highest elevation is Centreville or on Ebright Road. The Delaware Geological Survey (DGS) at the University of Delaware, through its relationship to the National Geodetic Survey (NGS) has determined that the highest monumented spot in Delaware is located on Ebright Road, near the Pennsylvania state line. Ebright Road is north of Namaans Road, east of route 202.

Celebrate Geologic Map Day 2012!

DGS Geologic Map 16

Friday, October 19th has been designated Geologic Map Day 2012. As an extension of the National Cooperative Geologic Mapping Program of USGS, Geologic Map Day focuses the attention of students, teachers, and the general public on the study, uses, and significance of geologic maps for education, science, business, and a variety of public policy concerns.

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 16 (Fairmount and Rehoboth Beach quadrangles). The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

To facilitate the GIS community of Delaware and to release the geologic map of the Fairmount and Rehoboth Beach quadrangles with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 16. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

GM16 Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware

GM16 Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware

The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

Map Scale: 
24,000

DGS Participates in the Delaware Estuary Conference

Partnership for the Delaware Estuary

DGS researchers Tom McKenna and John Callahan presented some of their work at the Delaware Estuary Science and Environmental Summit at Cape May, NJ, and hosted by the Partnership for the Delaware Estuary.

DGS releases new geologic map of Georgetown area

The Delaware Geological Survey (DGS) has published a new geologic map of the Georgetown area in eastern Sussex County entitled Geologic Map of the Georgetown Quadrangle, Delaware. Geologic Map No. 15 presents the results of research by Kelvin W. Ramsey of the DGS.

Presentation on national LiDAR applications and benefits

William S. Schenck, of the Delaware Geological Survey, gave a presentation at the Association of American Geographers annual meeting, Washington, D.C., April 14. The paper was titled "National LiDAR Applications and Benefits: A Perspective from the States."

This page tagged with:

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 15 (Geologic Map of the Georgetown Quadrangle, Delaware). The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit but is thought to be between late Pliocene to early Pleistocene in age. Refer to Ramsey, 2010 (DGS Report of Investigations No. 76) for details regarding the stratigraphic units.

To facilitate the GIS community of Delaware and to release the geologic map of the Georgetown Quadrangle with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 15. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit. Stratigraphic relationships in Delaware indicate that it is no older than late Miocene and no younger than early Pleistocene. Regional correlations based on similarities of depositional style, stratigraphic position, and sediment textures suggest that it is likely late Pliocene in age; correlative with the Bacons Castle Formation of Virginia (Ramsey, 1992, 2010).

Map Scale: 
24,000

The Delaware DataMIL

The Delaware DataMIL

The Delaware DataMIL collects, maps, and serves Delaware's Spatial Data Framework, or basic map datasets, on which state agencies, local and county governments, academic GIS users, and the private sector can use for their own needs. DataMIL also provides access for Delaware topographic maps that replace the old USGS 7.5-minute topographic maps for the State.