surficial geology

Sinepuxent Formation

Owens and Denny (1979) described the Sinepuxent Formation in Maryland as dark, poorly sorted, silty fine to medium sand with the lower part of the unit being fine grained with thin beds of black clay. The Sinepuxent Formation is described as being lithically distinct from the Omar and Ironshire Formations due to the presence gray, laminated, silty very fine to fine, quartzose, micaceous, sand to sandy silt. The base of the unit is typically a bluishgray to dark-gray clayey silt to silty clay. There are a few shelly zones within the Sinepuxent Formation in the vicinity of Bethany Beach (McDonald, 1981; McLaughlin et al., 2008). The Sinepuxent Formation is up to 40 feet thick.

Cypress Swamp Formation

The upper part of the Cypress Swamp Formation is a multi-colored, thinly bedded to laminated, quartzose fine sand to silty fine sand, with areally discontinuous laminae to thin beds of fine to coarse sand, sandy silt, clayey silt, organic silt, and peat. The lowermost 3 to 6 ft of the unit are commonly composed of thin beds of dark-colored, organic-rich, clayey silt with laminae to thin beds of fine sand and peat. Fine sand to fine sandy silt are present at the base of the unit in boreholes where the lower organic-rich beds are absent. Dark-colored, peaty, organic-rich silt and clayey silt with laminae of fine to medium sand as much as 4.5 ft thick are common within 5 ft of land surface, but may be absent in some locations. Colors are shades of brown, gray, and green where the unit contains visible organic matter, and orange, yellow, and red at shallow depths where the organic-rich beds are absent. Clay-sized minerals are a mixed suite that includes kaolinite, chlorite, illite, and vermiculite.

A Generalized Geologic Map of Delaware

The Delaware Geological Survey (DGS) has published the surficial geology of the state of Delaware at a scale of 1:100,000 for New Castle and Kent counties (Ramsey, 2005, 2007). Maps at this scale are useful for viewing general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to county-wide environmental or land-use issues. These maps, when combined with subsurface geologic information, provide a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water. Geologic maps are also used to identify geologic hazards, such as flood-prone areas, to identify sand and gravel resources, and for supporting state, county, and local land-use planning decisions. Portions of Sussex County have previously been mapped at 1:24,000-scale.

This page tagged with:

DGS releases new geologic map of Georgetown area

Date

The Delaware Geological Survey (DGS) has published a new geologic map of the Georgetown area in eastern Sussex County entitled Geologic Map of the Georgetown Quadrangle, Delaware. Geologic Map No. 15 presents the results of research by Kelvin W. Ramsey of the DGS.

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit. Stratigraphic relationships in Delaware indicate that it is no older than late Miocene and no younger than early Pleistocene.

DGS Cooperative and Joint-Funded Programs

The DGS is, by statute, the state agency responsible for entering into agreements with its counterpart federal agencies, including the U.S. Geological Survey, the USGS Office of Minerals Information (formerly the U.S. Bureau of Mines), and the Bureau of Ocean Energy Management, Regulation and Enforcement (formerly the U. S. Minerals Management Service), and for administering all cooperative programs of the State with these agencies. The DGS also works with many in-state and out-of-state partner agencies and organizations.

RI72 Geology and Extent of the Confined Aquifers of Kent County, Delaware

Ground water comprises nearly all of the water supply in Kent County, Delaware. The confined aquifers of the area are an important part of this resource base. The aim of this study is to provide an up-to-date geologic framework for the confined aquifers of Kent County, with a focus on their stratigraphy and correlation. Seven confined aquifers are used for water supply in Kent County. All occur at progressively greater depths south-southeastward, paralleling the overall dip of the sedimentary section that underlies the state.

Old College Formation

Reddish-brown to brown clayey silt, silty sand to sandy silt, and medium to coarse quartz sand with pebbles (Ramsey, 2005). Rock fragments of mica or sillimanite quartzose schist are common sand fraction. At land surface, a gray to grayish-brown clayey silt is present. Sands are cross-bedded with laminae of muscovite or heavy minerals defining the cross-sets. Silty beds tend to be structureless, or in the gray clayey silt beds, heavily bioturbated by roots. No fossils other than pollen have been recovered. Pollen indicate a cold climate during deposition of the upper clayey silt unit (unpublished DGS data). Stratigraphic relationships indicate either slightly younger than or contemporaneous with the Columbia Formation. Ranges from 5 to 40 ft in thickness.

Delaware Bay Group

The Delaware Bay Group consists of transgressive deposits that were laid down along the margins of ancestral Delaware Bay estuaries during middle to late Pleistocene rises and highstands of sea level. The Delaware Bay Group was described in detail by Ramsey (1997). The Delaware Bay Group is comprised of the Lynch Heights Formation, the Scotts Corners Formation, and the Cape May Formation (undivided) in New Jersey.