Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "surficial geology"

DGS Geologic Map No. 22 (Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware) Dataset

DGS Geologic Map No. 22 (Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 22 (Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware). The geological history of the surficial geologic units in western Sussex County is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface.

GM22 Geologic Map of the Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware

GM22 Geologic map of the Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware

The geological history of the surficial geologic units in western Sussex County is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface. Mapping was conducted using field maps at a scale of 1:12,000 with 2-ft contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map.

Delaware Geological Survey releases new geologic map of the Trap Pond area

The Delaware Geological Survey (DGS) has published a new geologic map of the Trap Pond and Pittsville areas in central Sussex County titled Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware.

DGS Geologic Map No. 21 (Trap Pond and Pittsville Quadrangles, Delaware) Dataset

DGS Geologic Map No. 21 (Trap Pond and Pittsville Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 21 (Trap Pond and Pittsville Quadrangles, Delaware). The geological history of the surficial units of the Trap Pond and the Delaware portion of the Pittsville Quadrangle was the result of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the Middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2-foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map.

GM21 Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware

GM21 Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware

The geological history of the surficial units of the Trap Pond and the Delaware portion of the Pittsville Quadrangle was the result of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the Middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2-foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map.

GM20 Geologic Map of the Millsboro and Whaleysville Quadrangles, Delaware

GM20 Geologic Map of the Millsboro and Whaleysville Quadrangles, Delaware

The geological history of the surficial units of the Millsboro Quadrangle and
Delaware portion of the Whaleysville Quadrangle was the result of deposition of the
Beaverdam Formation during the late Pliocene and its subsequent modification by
erosion and deposition related to sea-level fluctuations during the Pleistocene and late
Pleistocene upland swamp and bog deposition. The geology at the land surface was then
further modified by periglacial activity that produced dune deposits and Carolina Bays in
the map area. Surficial geologic mapping was conducted using field maps at a scale of
1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks
reflect detailed mapping using contours not shown on this map.

DGS Geologic Map No. 20 (Millsboro and Whaleysville Quadrangles) Dataset

DGS Geologic Map No. 20 (Millsboro and Whaleysville Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 20 (Millsboro and Whaleysville Quadrangles). The geological history of the surficial units of the Millsboro Quadrangle and Delaware portion of the Whaleysville Quadrangle was the result of deposition of the Beaverdam Formation during the late Pliocene and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene and late Pleistocene upland swamp and bog deposition. The geology at the land surface was then further modified by periglacial activity that produced dune deposits and Carolina Bays in the map area. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 20 (Millsboro and Whaleysville Quadrangles) exists for use in conjunction with this dataset.

GM19 Geologic Map of the Frankford and Selbyville Quadrangles, Delaware

GM19 Geologic Map of the Frankford and Selbyville Quadrangles, Delaware

The geological history of the surficial units of the Frankford and Delaware
portion of the Selbyville Quadrangles was the result of deposition of the Beaverdam
Formation during the late Pliocene and its subsequent modification by erosion and
deposition related to sea-level fluctuations during the Pleistocene. The geology at the
land surface was then further modified by periglacial activity that produced dune deposits
in the map area. Surficial geologic mapping was conducted using field maps at a scale of
1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks
reflect detailed mapping using contours not shown on this map.

DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

 DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles). The geological history of the surficial units of the Frankford and Delaware portion of the Selbyville Quadrangles is that of deposition of the Beaverdam Formation during the late Pliocene and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology at the land surface was then further modified by periglacial activity that produced dune deposits in the map area. Mapping was conducted using field maps at a scale of 1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping related to contours not shown on this map. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles) exists for use in conjunction with this dataset.

OneGeology

DGS participates in OneGeology initiative
Project Contact(s):

OneGeology (http://www.onegeology.org/) is an international effort to make available digital geologic map data from around the world. DGS participates in OneGeology by submitting two web map services, one for 1:100K scale surficial geologic units and one for 1:100K scale surficial geologic contacts. These services are open and interoperable (supporting both WMS and WFS protocols) with data attributes in GeoSciML-Portrayal format.

DGS Geologic Map No. 18 (Bethany Beach and Assawoman Bay Quadrangles, Delaware) Dataset

DGS Geologic Map No. 18 (Bethany Beach and Assawoman Bay Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 18 (Bethany Beach and Assawoman Bay Quadrangles). The geologic history of the surficial units of the Bethany Beach and Assawoman Bay Quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history onshore, in Indian River Bay and Assawoman Bay, and offshore in the Atlantic Ocean. Erosion during the late Pleistocene sea-level lowstand and ongoing deposition offshore and in Indian River Bay during the Holocene rise in sea level represents the latest of several cycles of erosion and deposition. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 18 (Bethany Beach and Assawoman Bay quadrangles) exists for use in conjunction with this dataset.

GM18 Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

The geologic history of the surficial units of the Bethany Beach and Assawoman Bay Quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history onshore, in Indian River Bay and Assawoman Bay, and offshore in the Atlantic Ocean. Erosion during the late Pleistocene sea-level lowstand and ongoing deposition offshore and in Indian River Bay during the Holocene rise in sea level represents the latest of several cycles of erosion and deposition.

Celebrate Geologic Map Day 2012!

DGS Geologic Map 16

Friday, October 19th has been designated Geologic Map Day 2012. As an extension of the National Cooperative Geologic Mapping Program of USGS, Geologic Map Day focuses the attention of students, teachers, and the general public on the study, uses, and significance of geologic maps for education, science, business, and a variety of public policy concerns.

DGS releases new DGIR web application

Delaware Geologic Information Resource (DGIR) Web Application

The Delaware Geological Survey has released the Delaware Geologic Information Resource (DGIR), an online data display tool and map viewer for geologic and hydrologic information, as a "beta" site. DGIR was designed to provide the Delaware professional community with a variety of geoscience data in one application. DGS will continue to refine the both the data and functionality of the website as it is reviewed.

Delaware Geologic Information Resource (DGIR) Map Viewer

DGIR Map Viewer Screenshot
Project Contact(s):

The Delaware Geologic Information Resource (DGIR) is an online data display tool and map viewer for a variety of geologic and hydrologic information released by the Delaware Geological Survey. It was designed to deliver the most commonly available and requested geologic and hydrologic information that is appropriate for use in hydrologic studies, required by regulation and ordinance, and to support state resource management decisions.

DGS Geologic Map No. 17 (Harbeson quadrangle) Dataset

DGS Geologic Map No. 17  (Harbeson quadrangle) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 17 (Harbeson quadrangle). The complex geologic history of the surficial units of the Harbeson Quadrangle is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

The complex geologic history of the surficial units of the Harbeson Quadrangle is one of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.

Publishing Surficial Geologic Maps of Delaware

Lillian T. Wang, GIS specialist/cartographer, Delaware Geological Survey, made a presentation titled "Publishing Surficial Geologic Maps of Delaware" at Digital Mapping Techniques 2011, College of William and Mary, Williamsburg, Va., May 24.

This page tagged with:

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 16 (Fairmount and Rehoboth Beach quadrangles). The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

To facilitate the GIS community of Delaware and to release the geologic map of the Fairmount and Rehoboth Beach quadrangles with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 16. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

First State Geology newsletter available online

In support of the University of Delaware's sustainability efforts, the Delaware Geological Survey is offering its First State Geology newsletter as an online document.

First State Geology features news about Delaware geology and water resources, recent DGS publications, and DGS staff activities.