Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "surface water"

Stream Station: Brandywine Creek at Wilmington

USGS 01481500 BRANDYWINE CREEK AT WILMINGTON, DE

Station Type: 
Stream
Period of Record: 
1946 to Present
Frequency: 
Monthly
Map County: 
New Castle County
Map Location: 
39.769416667,-75.573277

Stream Station: Red Clay Creek near Stanton

USGS 01480015 RED CLAY CREEK NEAR STANTON, DE

Station Type: 
Stream
Period of Record: 
1988 to Present
Frequency: 
Monthly
Map County: 
New Castle County
Map Location: 
39.71575,-75.639944

Stream Station: Red Clay Creek at Wooddale

USGS 01480000 RED CLAY CREEK AT WOODDALE, DE

Station Type: 
Stream
Period of Record: 
1943 to Present
Frequency: 
Monthly
Map County: 
New Castle County
Map Location: 
39.762805,-75.6365

Stream Station: White Clay Creek near Newark

USGS 01479000 WHITE CLAY CREEK NEAR NEWARK, DE

Station Type: 
Stream
Period of Record: 
October 1931 to September 1936, June 1943 to September 1957, October 1959 to Present
Frequency: 
Monthly
Map County: 
New Castle County
Map Location: 
39.69922,-75.675027

Stream Station: White Clay Creek at Newark

USGS 01478650 WHITE CLAY CREEK AT NEWARK, DE

Station Type: 
Stream
Period of Record: 
1994 to Present
Frequency: 
Monthly
Map County: 
New Castle County
Map Location: 
39.689222,-75.74875

Stream Station: Christina River at Coochs Bridge

USGS 01478000 CHRISTINA RIVER AT COOCHS BRIDGE, DE

Station Type: 
Stream
Period of Record: 
1943 to Present
Frequency: 
Monthly
Map County: 
New Castle County
Map Location: 
39.637388,-75.727888

DGS Digital Datasets

In the same ways as our printed publications, digital data released by the DGS represent the results of original professional research and as such are used by professionals and the public.

RI64 Results of Hydrogeologic Studies of the Cypress Swamp Formation, Delaware

RI64 Results of Hydrogeologic Studies of the Cypress Swamp Formation, Delaware

The Cypress Swamp Formation is the surficial geologic unit in south-central Sussex County, Delaware. Detailed hydrologic observations made as part of four separate studies between 1995 and 1999 show that the Cypress Swamp Formation consists of a complex assemblage of moderately permeable sands and low permeability organic and inorganic silts and clays that form a heterogeneous shallow subsurface hydrologic system that is between about 5 and 15 feet thick. Aquifer tests show that hydraulic conductivity ranges between 0.55 and 40 ft/day, with an arithmetic mean of 13 feet/day.

Delaware's Water Budget

In Delaware local rainfall, approximately 40" to 44" per year, renews part or all of our water supply on a regular basis. However, not all of the rain that falls is available for use.

OFR18 A Numerical Indicator of Water Conditions for Northern Delaware

OFR18 A Numerical Indicator of Water Conditions for Northern Delaware

Numerical indicators, or indices, are widely used to measure the status of complex relationships. As such, indices have become accepted by researchers and the public in such disparate fields as economics, air quality, and weather. In this paper we explore the formulation of an indicator of water conditions in northern Delaware, propose formulas that may be applicable, and test those proposals against long-term records of basic data. The need for a simple indicator of water supply conditions in Delaware, and especially in New Castle County, has become increasingly apparent. The Delaware River Basin Commission (DRBC) has applied an index to the Delaware River Basin, which includes a portion of Delaware. The Governor's Drought Advisory Committee has sought an objective means of determining when water supply conditions might warrant conservation measures. Discussions of the subject have also been held within the State Comprehensive Water Management Committee. We are pleased to acknowledge the constructive comments of these groups and of other colleagues with whom we have discussed this work. George R. Phillips of the Delaware Department of Natural Resources and Environmental Control (DNREC) was especially helpful in analyzing the practical implications of using the index presented in this paper. John R. Mather, Delaware State Climatologist, provided Palmer Drought Severity Index values with the cooperation of the National Weather Service. This report was reviewed by Richard N. Benson and John H. Talley of the Delaware Geological Survey (DGS).

OFR47 Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River

OFR47 Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River

Digital watershed and bay polygons for use in geographic information systems were created for Rehoboth Bay, Indian River, and Indian River Bay in southeastern Delaware. Polygons were created using a hierarchical classification scheme and a consistent, documented methodology that enables unambiguous calculations of watershed and bay surface areas within a geographic information system. The watershed boundaries were delineated on 1:24,000-scale topographic maps. The resultant polygons represent the entire watersheds for these water bodies, with four hierarchical levels based on surface area. Bay boundaries were delineated by adding attributes to existing polygons representing water and marsh in U.S. Geological Survey Digital Line Graphs of 1:24,000-scale topographic maps and by dissolving the boundaries between polygons with similar attributes. The hierarchy of bays incorporates three different definitions of the coastline: the boundary between open water and land, a simplified version of that boundary, and the upland-lowland boundary. The polygon layers are supplied in a geodatabase format.

Number of Pages: 
11

OFR44 Storm-Water and Base-Flow Sampling and Analysis in the Delaware Inland Bays Preliminary Report of Findings 1998-2000

OFR44 Storm-Water and Base-Flow Sampling and Analysis in the Delaware Inland Bays Preliminary Report of Findings 1998-2000

This report provides initial research results of a storm-water and base-flow sampling and analysis project conducted by the University of Delaware College of Marine Studies (CMS) and the Delaware Geological Survey (DGS). Base-flow samples were collected from six tributary watersheds of Delaware’s Inland Bays on 29 occasions from October 1998 to May 2000. Water samples were filtered in the field to separate dissolved nutrients for subsequent analysis, and a separate sample was collected and returned to the laboratory for particulate nutrient determinations. On each sampling date, temperature, conductivity, pH, and dissolved oxygen concentrations were determined at each sampling station. Stream discharge measurements at each of these sites were made by the U.S. Geological Survey (USGS) under a joint-funded agreement with the Delaware Department of Natural Resources and Environmental Control (DNREC) and the DGS. Together, the nutrient and discharge data were used to determine the total and unit (normalized to watershed area) nutrient loading from base flow to the Inland Bays from each of these watersheds on a quarterly and annual basis. At the same six stations, storm water was collected during eight storms from May 1999 to April 2000. Storm-water loadings of nutrients from each watershed were calculated from the concentrations of nutrients in water samples collected at fixed time intervals from the beginning of the storm-water discharge period until recession to base flow. These data provide DNREC with a more complete picture of the seasonal dependence of nutrient loading to the Bays from which to establish goals for total maximum daily loads in the Inland Bays watershed.

B14 Hydrology of the Columbia (Pleistocene) Deposits of Delaware: An Appraisal of a Regional Water-Table Aquifer

B14 Hydrology of the Columbia (Pleistocene) Deposits of Delaware: An Appraisal of a Regional Water-Table Aquifer

The Columbia (Pleistocene) deposits of Delaware form a regional water-table aquifer, which supplies about half the ground water pumped in the State. The aquifer is composed principally of sands which occur as channel fillings in northern Delaware and as a broad sheet across central and southern Delaware. The saturated thickness of the aquifer ranges from a few feet in many parts of northern Delaware to more than 180 feet in southern Delaware. Throughout 1,500 square miles of central and southern Delaware (75 percent of the State's area), the saturated thickness ranges from 25 to 180 feet and the Columbia deposits compose all or nearly all of the water-table aquifer.

Introduction to the Hydrogeology of Delaware

Brandywine Creek

Delaware’s water, both ground and surface, is one of its most important natural resources. As Delaware’s lead earth science agency, the Delaware Geological Survey provides information to inform and educate resource managers and the public to better understand and manage our water resources.

Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River (OFR 47)

Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River (OFR 47)

Digital watershed and bay polygons for use in geographic information systems were created for Rehoboth Bay, Indian River, and Indian River Bay in southeastern Delaware. Polygons were created using a hierarchical classification scheme and a consistent, documented methodology that enables unambiguous calculations of watershed and bay surface areas within a geographic information system. The watershed boundaries were delineated on 1:24,000-scale topographic maps. The resultant polygons represent the entire watersheds for these water bodies, with four hierarchical levels based on surface area. Bay boundaries were delineated by adding attributes to existing polygons representing water and marsh in U.S. Geological Survey Digital Line Graphs of 1:24,000-scale topographic maps and by dissolving the boundaries between polygons with similar attributes. The hierarchy of bays incorporates three different definitions of the coastline: the boundary between open water and land, a simplified version of that boundary, and the upland-lowland boundary. The polygon layers are supplied in a geodatabase format.