Manasquan Formation

Consists of 30 ft of silty, shelly, fine sands that are commonly glauconitic (Benson and Spoljaric, 1996). Deposited during the latest Paleocene to early Eocene (Benson and Spoljaric, 1996). Based on microfossils (unpublished DGS file data), it can be characterized as an open shelf deposit.

Shark River Formation

Glauconitic clayey silt and clay, with some glauconite sand and fine glauconitic quartz sand. Deposited in the middle Eocene (Benson and Spoljaric, 1996), and is generally 60 to 70 ft thick. Based on the microfossils (unpublished DGS file data), it can be characterized as an open shelf deposit.

Bryn Mawr Formation

Reddish-brown to yellowish-brown silty quartz sand to sandy silt that interfingers with medium to coarse clayey sand with gravel. Sand fraction, where a sandy silt, is fine- to very fine-grained and angular to subangular. Iron-cemented zones are common. Gravel fraction is primarily quartz. Sands are quartzose with minor amounts of weathered feldspar. Opaque heavy minerals form up to 3 percent of the sand fraction. Unit ranges up to 70 ft thick but generally less than 30 ft thick and commonly less than 10 ft thick. Surface forms a distinctive terrace that has elevations between 350 ft and 425 ft, and it overlies saprolite of the Piedmont rocks. No macrofossils have been recovered. Fossil pollen from the York Pit in Cecil County, Maryland (Pazzaglia, 1993; unpublished DGS data) indicate a Miocene age. Owens (1999) considered the unit late Oligocene in Pennsylvania.

Bridgeton Formation

Reddish-brown to brown, medium to very coarse, poorly sorted sand to silty quartz sand containing scattered gravel beds. Less than 15 ft thick and underlies a relict terrace flat that has elevations between 170 ft and 180 ft and parallels the present Delaware River. More extensive to the north in Pennsylvania (Owens, 1999; Berg et al., 1980).

Piney Point Formation

Bright green, fine to coarse, shelly, glauconitic (20 to 40% glauconite), quartz sand. Silty and clayey toward the bottom and coarsens upwards. Considered to be a marine deposit (Benson, Jordan, and Spoljaric, 1985). The Piney Point aquifer coincides with the sandier portion of the unit. Ranges up to 250 feet thick in the southern portion of Kent County.

Calvert Formation

Gray to grayish-brown, clayey silt to silty clay interbedded with gray to light-gray silty to fine to coarse quartz sands. Discontinuous beds of shell are common in the sands and in the clayey silts. Found in the subsurface throughout Kent County. Interpreted to be a marine deposit. Rarely the surficial unit on the uplands in northwestern Kent County where the Columbia or Beaverdam Formations are absent. Outcrops are patchy and are too small to be shown on this map. Three major aquifers are found within the Calvert Formation in Kent County: the Frederica, Federalsburg, and Cheswold, from top to bottom, respectively (McLaughlin and Velez, 2006). Ranges up to 425 feet thick.

Choptank Formation

Light gray to blue gray, fine to medium, shelly, silty, quartz sand and clayey silt. Discontinuous beds of fine sand and medium to coarse quartz sand are common. Base of the unit is marked by a coarse to granule sand that fines upwards to a medium to fine silty sand. This sand is the Milford aquifer (Ramsey, 1997; McLaughlin and Velez, 2006). In southern Kent County, can be subdivided into upper and lower units. Lower unit consists of the fining-upward sequence from the basal sand to a hard clayey silt to silty clay that ranges in color from grayish brown to bluish gray. Upper unit consists of clean to silty, fine to medium, moderately shelly sands with thin silty clay beds. Rarely found in outcrop in the upper reaches of some of the more deeply incised streams. Outcrops are too small to be shown on this map. Found in the southern half of Kent County. Up to 140 feet thick in the southernmost part of the county.

St. Marys Formation

Bioturbated, dark-greenish-gray silty clay, banded light-gray, white, and red silty clay, and glauconitic, shelly, very fine sandy silt. In the Georgetown Quadrangle, the St. Marys Formation is capped by about 5 to 15 ft of bioturbated, dark-greenish-gray silty clay. A distinct burrowed horizon separates the clay from the underlying banded clay that consists of a 10- to 15-ft thick, compact, color-banded silty clay with scattered white clayey concretions. The banded clay has a sharp contact at its base with underlying glauconitic, very fine, sandy silt. The sandy silt contains shells of the gastropod Turritella. The entire thickness of the St. Marys Formation is less than 100 ft in the Georgetown Quadrangle, thinning from its thickest in the southeast corner to about 50 ft thick in the northwest corner of the map area. Interpreted to be a marine deposit of late Miocene age (McLaughlin et al., 2008).

RI46 Shallow Subsurface Temperatures at Selected Locations in Delaware

Subsurface temperatures were measured in instrumented boreholes for about one and one-half years at depths down to 10 feet below land surface at four locations in the State. In New Castle County, temperatures were measured periodically in the field about twice a month at three sites, and, in Sussex County, they were automatically recorded every 15 minutes at one site. The depths of interest are generally in the unsaturated zone and are subject to both daily temperature fluctuations and longer seasonal changes.

OFR24 Saturated Thickness of the Water-Table Aquifer in Southern New Castle County, Delaware

This map shows the saturated thickness of the water-table aquifer. This aquifer consists of the deposits of the Columbia Formation and those portions of the Magothy and Englishtown-Mt. Laurel formations, and Rancocas Group that are hydraulically connected with the Columbia deposits (see Groot, Demicco, and Cherry, 1983). For example, large, saturated thicknesses in the zone trending northeast-southwest near Townsend reflect the addition of the sands of the Rancocas Group to the total thickness of the sands of the overlying Columbia Formation.