Deal Formation

It is a clayey, calcareous, shelly, glauconitic (10-20 percent) silt. Its colors range from greenish-gray and gray-green to brownish-gray and light gray. It is rich in calcareous and siliceous microfossils. The matrix mineralogy shows a high calcite component, except in the lower part of the formation which is within a calcite dissolution interval. In the lower half of the formation quartz is predominant.

Bethany Formation

The composition, thickness, and geophysical log signature of the Bethany Formation vary with location and depth. In general, the Bethany Formation is a sequence of clayey and silty beds with discontinuous lenses of sand (Andres, 1986; Ramsey, 2003). The most common lithologies are silty, clayey fine sand; sandy, silty clay; clayey, sandy silt; fine to medium sand; sandy, clayey silt, and medium to coarse sand with granule and pebble layers. Thin gravel layers occur most frequently in updip areas and are rarer in downdip areas. Sands are typically quartzose. Lignite, plant remains, and mica are common, grains of glauconite are rare. In the Lewes area, Ramsey (2003) describes the Bethany Formation as consisting of gray, olive gray, bluish-gray clay to clayey silt interbedded with fine to very coarse sand. Lignitic and gravelly beds are common.

RI33 Exploring, Drilling, and Producing Petroleum Offshore

This report was prepared to provide a concise description of offshore operations related to exploration for petroleum (oil and natural gas} from the initial geologic and geophysical investigations to production. Petroleum deposits differ in their physical and chemical properties and are associated in the rocks with saline water. The origin of petroleum and its migration through rocks are not well understood. Commercial accumulations are found in certain suitable rocks or geologic structures - stratigraphic and structural traps, respectively.

RI76 Stratigraphy, Correlation, and Depositional Environments of the Middle to Late Pleistocene Interglacial Deposits of Southern Delaware

Rising and highstands of sea level during the middle to late Pleistocene deposited swamp to nearshore sediments along the margins of an ancestral Delaware Bay, Atlantic coastline, and tributaries to an ancestral Chesapeake Bay. These deposits are divided into three lithostratigraphic groups: the Delaware Bay Group, the Assawoman Bay Group (named herein), and the Nanticoke River Group (named herein). The Delaware Bay Group, mapped along the margins of Delaware Bay, is subdivided into the Lynch Heights Formation and the Scotts Corners Formation.

Cat Hill Formation

Yellowish-brown to light-gray, medium to fine sand with thin beds and laminae of medium to coarse sand and scattered pebbles (B) that grades downward into bioturbated, gray, very fine sand to silt (A). Rare beds of light-gray to red silty clay are found near the contact with the overlying Beaverdam Formation. Laminae of opaque heavy minerals are present in the upper sands. Laminae of very fine organic particles are found in the lower sand as well as laminae to thin beds of coarse sand to gravel. The burrows in the lower sand are clay lined, and in some intervals, the sediment is completely bioturbated to the extent that no sedimentary structures are preserved. Sand is primarily quartz with less than 5% feldspar and a trace to less than 1% mica (in the very fine sand to silt). Glauconite is present only in trace amounts. Fragments of lignite are common to rare in the organic laminae. Interpreted to be a late Miocene, very shallow marine to marginal marine (shoreface) deposit (McLaughlin et al., 2008). About 100 to 120 ft thick in the Georgetown Quadrangle.