Potomac Formation

Dark-red, gray, pink, and white silty clay to clayey silt and very fine to medium sand beds. Beds of gray clayey silt to very fine sand that contain pieces of charcoal and lignite are common. Deposited in a fluvial setting in a tropical to subtropical environment as indicated by abundant paleosol horizons. Ranges from 20 ft updip to over 1600 ft thick in southern New Castle County.

Mt. Laurel Formation

Slightly calcareous, glauconitic, quartz sand that is medium to fine grained. Contains about 3 to 5 percent glauconite. Sand is subrounded to subangular and slightly silty with a few moderately silty zones. Scattered belemnites are present as well as a few scattered shell fragments or thin shell beds. Uniform dark olive gray or yellowish-brown where weathered. In outcrop, reported to be extensively burrowed (Owens, et al., 1970). Where it is the surficial deposit south of the Chesapeake and Delaware Canal, the Mt. Laurel can be confused with the Columbia Formation, especially where the color is similar. Can be differentiated by ubiquitous presence of glauconite and generally better sorted sands of the Mt. Laurel. Marine in origin. Ranges from 30 to 100 ft in thickness.

Hornerstown Formation

Glauconite sand that is silty and slightly to moderately clayey and contains scattered shell beds. Glauconite approximately 90 percent to 95 percent of the sand fraction and quartz 5 percent to 10 percent. Near the top of unit, silt-filled burrows are present. Lower, the unit is commonly laminated with silty sand and moderately clayey sand. Silt and clay matrix is calcareous. Uniformly a dark-greenish-gray. Interpreted to be marine in origin. The Cretaceous-Tertiary boundary is considered to lie within the formation. Rarely occurs in outcrop and where shown on the map is covered by colluvium along the stream valley bluffs. Ranges between 10 and 50 feet in thickness.

RI71 Internal Stratigraphic Correlation of the Subsurface Potomac Formation, New Castle County, Delaware, and Adjacent Areas in Maryland and New Jersey

This report presents a new time-stratigraphic framework for the subsurface Potomac Formation of New Castle County, Delaware, part of adjacent Cecil County, Maryland, and nearby tie-in boreholes in New Jersey. The framework is based on a geophysical well-log correlation datum that approximates the contact between Upper and Lower Cretaceous sediments. This datum is constrained by age determinations based on published and unpublished results of studies of fossil pollen and spores in samples of sediment cores from boreholes in the study area.

Vincentown Formation

Glauconitic sand that ranges from slightly silty to moderately silty and slightly to moderately clayey. Dominant constituent is subrounded to subangular clear quartz sand that ranges from medium to fine grained. Fine-grained glauconite is a secondary constituent, which ranges from 5 percent in the clayey zones to 15 percent where cleaner. Towards bottom of unit, glauconite percentages increase to about 50 percent of the sand fraction. Silty and clayey zones are thin to thick laminae ranging from 0.01 to 0.5 ft thick. Olive gray to dark-yellowish-brown in zones where iron cement is present. Interpreted to be marine in origin. Rarely occurs in outcrop and is covered by colluvium along the stream valley bluffs where shown on the map. Ranges from 50 to 100 ft in thickness in the subsurface and less than 50 ft thick where it is cut by younger deposits updip.

Bryn Mawr Formation

Reddish-brown to yellowish-brown silty quartz sand to sandy silt that interfingers with medium to coarse clayey sand with gravel. Sand fraction, where a sandy silt, is fine- to very fine-grained and angular to subangular. Iron-cemented zones are common. Gravel fraction is primarily quartz. Sands are quartzose with minor amounts of weathered feldspar. Opaque heavy minerals form up to 3 percent of the sand fraction. Unit ranges up to 70 ft thick but generally less than 30 ft thick and commonly less than 10 ft thick. Surface forms a distinctive terrace that has elevations between 350 ft and 425 ft, and it overlies saprolite of the Piedmont rocks. No macrofossils have been recovered. Fossil pollen from the York Pit in Cecil County, Maryland (Pazzaglia, 1993; unpublished DGS data) indicate a Miocene age. Owens (1999) considered the unit late Oligocene in Pennsylvania.

Bridgeton Formation

Reddish-brown to brown, medium to very coarse, poorly sorted sand to silty quartz sand containing scattered gravel beds. Less than 15 ft thick and underlies a relict terrace flat that has elevations between 170 ft and 180 ft and parallels the present Delaware River. More extensive to the north in Pennsylvania (Owens, 1999; Berg et al., 1980).

Old College Formation

Reddish-brown to brown clayey silt, silty sand to sandy silt, and medium to coarse quartz sand with pebbles (Ramsey, 2005). Rock fragments of mica or sillimanite quartzose schist are common sand fraction. At land surface, a gray to grayish-brown clayey silt is present. Sands are cross-bedded with laminae of muscovite or heavy minerals defining the cross-sets. Silty beds tend to be structureless, or in the gray clayey silt beds, heavily bioturbated by roots. No fossils other than pollen have been recovered. Pollen indicate a cold climate during deposition of the upper clayey silt unit (unpublished DGS data). Stratigraphic relationships indicate either slightly younger than or contemporaneous with the Columbia Formation. Ranges from 5 to 40 ft in thickness.

Delaware Bay Group

The Delaware Bay Group consists of transgressive deposits that were laid down along the margins of ancestral Delaware Bay estuaries during middle to late Pleistocene rises and highstands of sea level. The Delaware Bay Group was described in detail by Ramsey (1997). The Delaware Bay Group is comprised of the Lynch Heights Formation, the Scotts Corners Formation, and the Cape May Formation (undivided) in New Jersey.

RI67 The Cat Hill Formation and Bethany Formation of Delaware

Because of the rapid development occurring in coastal Delaware and the importance of ground water to the economy of the area, definition of formal lithostratigraphic units hosting aquifers and confining beds serves a useful purpose for resource managers, researchers, and consultants working in the area. The Pocomoke and Manokin are artesian aquifers pumped by hundreds of domestic and dozens of public wells along the Atlantic coast in Delaware and Maryland. These aquifers are being increasingly used for public water supply.