Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "sediments"

Protecting tidal wetlands - UD scientists study tidal flow, sediment movement in Kent salt marsh

Three University of Delaware scientists are studying tidal water flow and sediment movement in a Kent County salt marsh to better understand changes to the marsh ecosystem due to a rising sea level.

Losing ground - Can marshes keep pace with the rising tide?

Marshes reduce storm flooding, filter contaminants out of water and provide habitat for birds, fish and other wildlife. However, these environmentally critical areas have decreased in extent along the coast in recent decades, and UD researchers are working to better understand the factors that affect marsh stability—especially in the face of sea level rise.

Finding faults - Delaware Geological Survey discovers evidence of past earthquakes

Delaware Geological Survey scientists found slickensides in core samples indicating faults in northern Delaware.

Delaware Geological Survey (DGS) scientists have uncovered hard proof of faults in northern Delaware, indicating the occurrence of earthquakes millions of years ago.

Monitoring our water - Delaware Geological Survey improving groundwater monitoring efforts with new wells, sampling

Scott Andres examines sediment samples extracted from more than 500 feet underground for clues about the amount and quality of water available in central Delaware.

Delaware Geological Survey improving groundwater monitoring efforts with new wells, sampling. Scientists are digging for answers about the amount and quality of water available underground in central Delaware, where ongoing development will put increasing demands on water supplies in the coming decade.

The Delaware Geological Survey (DGS) is installing 7,700 feet of wells at eight sites in southern New Castle and northern Kent counties to improve groundwater-monitoring efforts, supported by a $600,000 grant from the Delaware Department of Natural Resources and Environmental Control (DNREC). Groundwater is the primary source of drinking water south of the Chesapeake and Delaware Canal, and populations there are projected to continue expanding.

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

The complex geologic history of the surficial units of the Harbeson Quadrangle is one of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.

A.Scott Andres was referenced in a News Journal article about Cypress Swamp

In 2000, A. Scott Andres, a senior scientist and hydrologist with the Delaware Geological Survey, released findings that disclosed a unique formation at the swamp.
In geologic time, the swamp isn't that old.
It formed about 22,000 years ago in a fresh-water, cold-climate marsh and boreal forested swamp.
Organic matter started building up and a cold wind blew in silt, clay and sand from nearby dunes and surrounding high ground. More sediment washed in with runoff from streams.
Thin sheets of sand likely spread during times when the land thawed.
Conditions began to change about 10,000 years ago as the climate warmed, forming a temperate-forested swamp, bog and flood plain.
There was more erosion and movement of organic-rich sediment to the fresh-water swamp. Today, it's considered the northernmost Southern forest on the East Coast.

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 16 (Fairmount and Rehoboth Beach quadrangles). The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

To facilitate the GIS community of Delaware and to release the geologic map of the Fairmount and Rehoboth Beach quadrangles with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 16. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

GM16 Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware

GM16 Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware

The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

Delaware Geologic Mapping Program (STATEMAP)

STATEMAP Status Map

The Delaware Geological Survey has a continuing program to map the geology of the entire state at the detailed scale of 1:24,000. The STATEMAP component of the National Cooperative Geologic Mapping Program has contributed significantly to our surficial geologic mapping program. This work has resulted in not only new geologic mapping, but also the digital compilation of previous mapping. Products of this program include file formats that can be downloaded and printed from the web as geologic map products and imported into GIS software as georeferenced layers.

Delaware Offshore Geologic Inventory Dataset

Delaware Offshore Geologic Inventory Dataset

Since 1992, the Delaware Geological Survey (DGS) has compiled a geologic database known as the Delaware Offshore Geologic Inventory (DOGI) that consists of sediment samples, radiocarbon and amino acid racemization dates, seismic profiles, and vibracores taken from the near-shore and inner continental shelf in state and federal waters. Most of the 366 vibracores are stored at the DGS on-site core and sample repository.

DGS Digital Datasets

In the same ways as our printed publications, digital data released by the DGS represent the results of original professional research and as such are used by professionals and the public.

RI72 Geology and Extent of the Confined Aquifers of Kent County, Delaware

RI72 Geology and Extent of the Confined Aquifers of Kent County, Delaware

Ground water comprises nearly all of the water supply in Kent County, Delaware. The confined aquifers of the area are an important part of this resource base. The aim of this study is to provide an up-to-date geologic framework for the confined aquifers of Kent County, with a focus on their stratigraphy and correlation. Seven confined aquifers are used for water supply in Kent County. All occur at progressively greater depths south-southeastward, paralleling the overall dip of the sedimentary section that underlies the state. The two geologically oldest, the Mount Laurel and Rancocas aquifers, are normally reached by drilling only in the northern part of the county. The Mount Laurel aquifer is an Upper Cretaceous marine shelf deposit composed of clean quartz sands that are commonly glauconitic. It occurs at around 300 ft below sea level in the Smyrna Clayton area and is typically just less than 100 ft thick. Southward, toward Dover, it passes into fine-grained facies that do not yield significant ground water. The Rancocas aquifer is a Paleocene to Eocene marine unit of shelf deposits consisting of glauconite-rich sands with shells and hard layers. It occurs as high as 100 ft below sea level in northwestern Kent County and deepens southeastward, rapidly changing facies to finer-grained, nonaquifer lithologies in the same direction.

RI64 Results of Hydrogeologic Studies of the Cypress Swamp Formation, Delaware

RI64 Results of Hydrogeologic Studies of the Cypress Swamp Formation, Delaware

The Cypress Swamp Formation is the surficial geologic unit in south-central Sussex County, Delaware. Detailed hydrologic observations made as part of four separate studies between 1995 and 1999 show that the Cypress Swamp Formation consists of a complex assemblage of moderately permeable sands and low permeability organic and inorganic silts and clays that form a heterogeneous shallow subsurface hydrologic system that is between about 5 and 15 feet thick. Aquifer tests show that hydraulic conductivity ranges between 0.55 and 40 ft/day, with an arithmetic mean of 13 feet/day.

RI63 An Evaluation of Sand Resources, Atlantic Offshore, Delaware

RI63 An Evaluation of Sand Resources, Atlantic Offshore, Delaware

Lithologic logs from 268 vibracores taken from the Delaware Atlantic offshore were evaluated for sediment type and compatibility with historical beach sediment textures. A model of sand resource evaluation, known as "stack-unit mapping" (Kempton, 1981) was applied to all of the cores, and each core was labeled by its lithology in vertical sequence. The results are shown in detailed maps of the beach-quality sand resources offshore in state and federal waters. Results show significant quantities (approximately 54 million cubic yards) of excellent beach-quality sand sources within the three-mile state limit offshore Indian River Inlet, and within the Inner Platform and Detached Shoal Field geomorphic regions. In federal waters, sand is found on Fenwick Shoal Field and farther offshore Indian River Inlet on the Outer Platform (approximately 43.6 million cubic yards combined). Most of the beach-quality sand resources are believed to be reworked tidal delta deposits of a former Indian River Inlet during periods of lower sea level. Farther south, the resources are accumulations of recent surficial sands of the inner shelf (Detached Shoal Field and Fenwick Shoal Field) showing that the geomorphic region does influence sediment quality. This study found that paleochannels and bathymetry had no relationship to grain size. Multiple cut and fill episodes contributed to the diversity in grain sizes.

RI62 The Cypress Swamp Formation, Delaware

RI62 The Cypress Swamp Formation, Delaware

The Cypress Swamp of Sussex County, Delaware, is underlain by a body of late Pleistocene- to Holocene-age unconsolidated sediments. They form a mappable geologic unit herein named the Cypress Swamp Formation. Deposits of the formation can be found outside the current boundaries of the Cypress Swamp and record the erosion and redistribution of older Pleistocene coastal and Pliocene sedimentary units.

RI58 The Pliocene and Quaternary Deposits of Delaware: Palynology, Ages, and Paleoenvironments

RI58 The Pliocene and Quaternary Deposits of Delaware: Palynology, Ages, and Paleoenvironments

The surficial Pliocene and Quaternary sedimentary deposits of the Atlantic Coastal Plain of Delaware comprise several formal and informal stratigraphic units. Their ages and the paleoenvironments they represent are interpreted on the basis of palynological and lithologic data and, to a lesser degree, on geomorphology.

RI55 Geology of the Milford and Mispillion River Quadrangles

RI55 Geology of the Milford and Mispillion River Quadrangles

Investigation of the Neogene and Quaternary geology of the Milford and Mispillion River quadrangles has identified six formations: the Calvert, Choptank, and St. Marys formations of the Chesapeake Group, the Columbia Formation, and the Lynch Heights and Scotts Comers formations of the Delaware Bay Group. Stream, swamp, marsh, shoreline, and estuarine and bay deposits of Holocene age are also recognized. The Calvert, Choptank, and St. Marys formations were deposited in inner shelf marine environments during the early to late Miocene. The Columbia Formation is of fluvial origin and was deposited during the middle Pleistocene prior to the erosion and deposition associated with the formation of the Lynch Heights Formation. The Lynch Heights Formation is of fluvial and estuarine origin and is of middle Pleistocene age. The Scotts Corners Formation was deposited in tidal, nearshore, and estuarine environments and is of late Pleistocene age. The Scotts Corners Formation and the Lynch Heights Formation are each interpreted to have been deposited during more than one cycle of sea-level rise and fall. Latest Pleistocene and Holocene deposition has occurred over the last 11,000 years.

RI53 Geology of the Seaford Area, Delaware

RI53 Geology of the Seaford Area, Delaware

This report supplements the map "Geology of the Seaford Area, Delaware" (Andres and Ramsey, 1995). The map portrays surficial and shallow subsurface stratigraphy and geology in and around the Seaford East and Delaware portion of the Seaford West quadrangles. The Quaternary Nanticoke deposits and Pliocene Beaverdam Formation are the primary lithostratigraphic units covering upland surfaces in the map area. Recent swamp, alluvial, and marsh deposits cover most of the floodplains of modern streams and creeks. The Miocene Choptank, St. Marys, and Manokin formations occur in the shallow subsurface within 300 ft of land surface. The Choptank, St. Marys, and Manokin formations were deposited in progressively shallower water marine environments. The Beaverdam Formation records incision of underlying units and progradation of a fluvial-deltaic system into the map area. The geologic history of the Quaternary is marked by weathering and erosion of the surface of the Beaverdam and deposition of the Nanticoke deposits by the ancestral Nanticoke River. Depositional environments in the Nanticoke deposits include fresh water streams and ponds, estuarine streams and lagoons, and subaerial dunes.

OFR13 Delaware's Extractive Mineral Industry

OFR13 Delaware's Extractive Mineral Industry

The purpose of this report is to provide information on the mining industry of Delaware as an essential component of a growing economy. The industry, particularly in sand and gravel mining, must deal with uneven regulation, land use competition, and environmental pressures. It is hoped that the information gathered here will assist planning and regulatory agencies as well as an interested general public in evaluating the role of the extractive mineral industry.

OFR9 Geologic Field Trips in Delaware

OFR9 Geologic Field Trips in Delaware

The information contained in this Guidebook was compiled on the occasion of the Annual Meeting of the Association of American State Geologists held in Delaware in June 1977. The Delaware Geological Survey is pleased to have been selected to host this national meeting. The field trip logs were designed to familiarize geologists from across the United States with basic features of Delaware's geology and resources. We have also sought to identify some points of historical and cultural interest that may help the visitor become familiar with our State. Experience has shown that field guides retain their usefulness beyond the event that they initially served. They may assist classes, other groups, and individuals seeking additional information about their physical environment. Therefore, this Guidebook has been published as an Open File Report for public distribution. All users of this information are urged to exercise caution, especially at rock faces and along waterways, and to obtain specific permission for visits from landowners where necessary.

This page tagged with: