Share

DGS Annual Report

DGS Annual Report of Programs and Activities.

Click here to download!

Site content related to keyword: "nitrate"

Delaware Geological Survey issues report on groundwater modeling in eastern Sussex County

The Delaware Geological Survey (DGS) has released a new technical report titled Simulation of Groundwater Flow and Contaminant Transport in Eastern Sussex County, Delaware with Emphasis on Impacts of Spray Irrigation of Treated Wastewater, which was prepared by Changming He and A. Scott Andres of DGS.

DGS Report of Investigations No. 79 documents development of a detailed study of subsurface hydrogeology, interactions between aquifers and streams, and the effects of spray irrigation of treated wastewater on groundwater beneath southern eastern Sussex County.

RI79 Simulation of Groundwater Flow and Contaminant Transport in Eastern Sussex County, Delaware With Emphasis on Impacts of Spray Irrigation of Treated Wastewater

Simulation of Groundwater Flow and Contaminant Transport in Eastern Sussex County, Delaware With Emphasis on Impacts of Spray Irrigation of Treated Wastewater

This report presents a conceptual model of groundwater flow and the effects of nitrate (NO3-) loading and transport on shallow groundwater quality in a portion of the Indian River watershed, eastern Sussex County, Delaware. Three-dimensional, numerical simulations of groundwater flow, particle tracking, and contaminant transport were constructed and tested against data collected in previous hydrogeological and water-quality studies.

The simulations show a bimodal distribution of groundwater residence time in the study area, with the largest grouping at less than 10 years, the second largest grouping at more than 100 years, and a median of approximately 29 years.

Historically, the principal source of nitrate to the shallow groundwater in the study area has been from the chemical- and manure-based fertilizers used in agriculture. A total mass of NO3- -nitrogen (N) of about 169 kg/day is currently simulated to discharge to surface water. As the result of improved N-management practices, after 45 years a 20 percent decrease in the mass of NO3- -N reaching the water table would result in an approximately 4 percent decrease in the mass of simulated N discharge to streams. The disproportionally smaller decrease in N discharge reflects the large mass of N in the aquifer coupled with long groundwater residence times.

Currently, there are two large wastewater spray irrigation facilities located in the study domain: the Mountaire Wastewater Treatment Facility and Inland Bays Wastewater Facility. The effects of wastewater application through spray irrigation were simulated with a two-step process. First, under different operations and soil conditions, evaporation and water flux, NO3- -N uptake by plants, and NO3- -N leaching were simulated using an unsaturated flow model, Hydrus-1D. Next, the range of simulated NO3- -N loads were input into the flow and transport model to study the impacts on groundwater elevation and NO3- -N conditions.

Over the long term, the spray irrigation of wastewater may increase water-table elevations up to 2.5m and impact large volumes of groundwater with NO3-. Reducing the concentration of NO3- in effluent and increasing the irrigation rate may reduce the volumes of water impacted by high concentrations of NO3-, but may facilitate the lateral and vertical migration of NO3-. Simulations indicate that NO3- will eventually impact deeper aquifers. An optimal practice of wastewater irrigation can be achieved by adjusting irrigation rate and effluent concentration. Further work is needed to determine these optimum application rates and concentrations.

Scientists study flow of groundwater into bays - results may help track pollution

Scientists study flow of groundwater into bays. Results may help track pollution.

On a small, homemade barge, built from the skeleton of an old ship, a gray slurry of bay bottom sand flows out of a pipe into a bucket. Two scientists, a well driller and two student interns drill a hole in the floor of the Indian River Bay. They’ll install a very long pipe into the hole and use it to monitor groundwater – how much flows into the bay, how salty it is and how many nutrients it carries with it.

OFR1 A Preliminary Report on Nitrate Contamination of Shallow Ground Waters in Delaware

OFR1 A Preliminary Report on Nitrate Contamination of Shallow Ground Waters in Delaware

Inspection of water analyses on file at the Delaware Geological Survey revealed that 25 percent of the shallow wells yield water with nitrate concentrations approaching or in excess of the Delaware State Board of Health and U. S. Public Health Service limit of 45 parts per million (ppm). Nitrate concentrations greater than 45 ppm seem to be detrimental to the health of infants during their first few months of life; adults drinking the same water are not affected but breast-fed infants of mothers drinking such water may become ill. The illness ("blue baby sickness" or methemoglobinemia) results from the conversion of nitrate to nitrite by nitrite-forming bacteria in the upper part of the digestive tract of some infants and the further conversion of hemoglobin to methemoglobin which is incapable of transporting oxygen; the result is oxygen starvation. Little is known about the low level effect of undetected methemoglobinemia on infants.

This page tagged with: