Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "mapping"

The Delaware DataMIL is Retired

The Delaware DataMIL, an online web mapping application that has provided accurate, up-to-date Delaware Geospatial Framework (basemap layers), current and historic aerial photography, and topographic maps for Delaware since 2002 is retired as of June 30, 2013. Originally built as a state of the art, crowd source editing and map delivery system and pilot project for the US Geological Survey National Map, the DataMIL is being replaced by newer mapping technology through the Department of Technology and Information (DTI) which will have a new system in place shortly.

Delaware Geological Survey releases new geologic map of the Trap Pond area

The Delaware Geological Survey (DGS) has published a new geologic map of the Trap Pond and Pittsville areas in central Sussex County titled Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware.

DGS Geologic Map No. 21 (Trap Pond and Pittsville Quadrangles, Delaware) Dataset

DGS Geologic Map No. 21 (Trap Pond and Pittsville Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 21 (Trap Pond and Pittsville Quadrangles, Delaware). The geological history of the surficial units of the Trap Pond and the Delaware portion of the Pittsville Quadrangle was the result of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the Middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2-foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map.

GM21 Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware

GM21 Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware

The geological history of the surficial units of the Trap Pond and the Delaware portion of the Pittsville Quadrangle was the result of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the Middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2-foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map.

Number of Pages: 
1
Map Scale: 
24,000

Delaware Geological Survey releases new geologic map of the Millsboro area

The Delaware Geological Survey (DGS) has published a new geologic map of the Millsboro and Whaleysville areas in central Sussex County titled Geologic Map of the Millsboro and Whaleysville Quadrangles, Delaware.

This page tagged with:

David Wunsch, appointed to Federal Advisory Committee for the National Cooperative Geologic Mapping Program

David Wunsch, director of the Delaware Geological Survey and state geologist, has had an appointment to the Federal Advisory Committee for the National Cooperative Geologic Mapping Program approved by the White House. The committee is charged with advising the director of the U.S. Geological Survey on planning and implementation of the geologic mapping program.

This page tagged with:

Delaware Geological Survey releases geologic map of Frankford, Selbyville area

The Delaware Geological Survey (DGS) has published a new geologic map of the Frankford and Selbyville area in eastern Sussex County titled Geologic Map of the Frankford and Selbyville Quadrangles, Delaware.

This page tagged with:

OneGeology

DGS participates in OneGeology initiative
Project Contact(s):

OneGeology (http://www.onegeology.org/) is an international effort to make available digital geologic map data from around the world. DGS participates in OneGeology by submitting two web map services, one for 1:100K scale surficial geologic units and one for 1:100K scale surficial geologic contacts. These services are open and interoperable (supporting both WMS and WFS protocols) with data attributes in GeoSciML-Portrayal format.

Delaware State and County Boundaries

Delaware State and County Boundaries

Three datasets are included: the official state boundary line, the county boundary lines, and the land/shore outline. These geospatial data files comprise the bounding lines relating to the political boundary delineation for the State of Delaware as well as the shoreline taken from the 2002 orthophotos of Delaware.

Elevation Contours Dataset for Delaware

Elevation Contours Dataset for Delaware

Elevation contours at 2 foot intervals for the State of Delaware were produced for New Castle and Kent Counties based on the 2007 LIDAR) and for Sussex County (based on the 2005 LIDAR.) Data are in line shapefile format.

GM18 Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

The geologic history of the surficial units of the Bethany Beach and Assawoman Bay Quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history onshore, in Indian River Bay and Assawoman Bay, and offshore in the Atlantic Ocean. Erosion during the late Pleistocene sea-level lowstand and ongoing deposition offshore and in Indian River Bay during the Holocene rise in sea level represents the latest of several cycles of erosion and deposition.

Number of Pages: 
1
Map Scale: 
24,000

Highest point in Delaware

Ebright Azimuth - The Highest Monumented Point in Delaware

For many years, there has been a question in the minds of some Delawareans as to whether Delaware's highest elevation is Centreville or on Ebright Road. The Delaware Geological Survey (DGS) at the University of Delaware, through its relationship to the National Geodetic Survey (NGS) has determined that the highest monumented spot in Delaware is located on Ebright Road, near the Pennsylvania state line. Ebright Road is north of Namaans Road, east of route 202.

Celebrate Geologic Map Day 2012!

DGS Geologic Map 16

Friday, October 19th has been designated Geologic Map Day 2012. As an extension of the National Cooperative Geologic Mapping Program of USGS, Geologic Map Day focuses the attention of students, teachers, and the general public on the study, uses, and significance of geologic maps for education, science, business, and a variety of public policy concerns.

DGS releases new DGIR web application

Delaware Geologic Information Resource (DGIR) Web Application

The Delaware Geological Survey has released the Delaware Geologic Information Resource (DGIR), an online data display tool and map viewer for geologic and hydrologic information, as a "beta" site. DGIR was designed to provide the Delaware professional community with a variety of geoscience data in one application. DGS will continue to refine the both the data and functionality of the website as it is reviewed.

United States Geoscience Information Network (USGIN)

United States Geoscience Information Network (USGIN)
Project Contact(s):

The United States Geoscience Information Network (USGIN) initiative is the product of a partnership between the Association of American State Geologists (AASG) and the United States Geological Survey (USGS) created to facilitate discovery of, and access to, geoscience information provided by state and federal geological surveys of the United States. DGS has entered into a partnership with the Arizona Geological Survey (AZGS) to participate in USGIN by establishing a metadata clearinghouse node for Delaware.

This page tagged with:

Mapping Tsunami Inundation for the U.S. East Coast

National Tsunami Hazard Mitigation Program
Project Contact(s):

This project will assess tsunami hazard from the above mentioned and other relevant tsunami sources recently studied in the literature and model the corresponding tsunami inundation in affected US East coast communities. We will combine ocean scale simulations of transoceanic tsunami sources, such as Lisbon 1755 like or Puerto Rico Trench co-seismic events, and CVV collapse, with regional scale simulations of these events, along with the regional scale SMF events, in order to establish the relative degree of hazards for East Coast communities. Detailed inundation studies will be conducted for highest-risk East Coast communities, and results of these studies will be used to construct a first-generation of tsunami inundation maps for the chosen communities.

DGS Geologic Map No. 17 (Harbeson quadrangle) Dataset

DGS Geologic Map No. 17  (Harbeson quadrangle) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 17 (Harbeson quadrangle). The complex geologic history of the surficial units of the Harbeson Quadrangle is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

The complex geologic history of the surficial units of the Harbeson Quadrangle is one of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.

Map Scale: 
24.000

Publishing Surficial Geologic Maps of Delaware

Lillian T. Wang, GIS specialist/cartographer, Delaware Geological Survey, made a presentation titled "Publishing Surficial Geologic Maps of Delaware" at Digital Mapping Techniques 2011, College of William and Mary, Williamsburg, Va., May 24.

This page tagged with: