Share

DGS Annual Report

DGS Annual Report of Programs and Activities.

Click here to download!

Site content related to keyword: "hydrogeology"

RI65 Wellhead Protection Area Delineations for the Lewes-Rehoboth Beach Area, Delaware

RI65 Wellhead Protection Area Delineations for the Lewes-Rehoboth Beach Area, Delaware

Water supply in the rapidly developing Lewes and Rehoboth Beach areas of coastal Sussex County in Delaware is provided by more than 80 individual public water wells and hundreds of domestic wells. Significant concerns exist about the future viability of the ground-water resource in light of contamination threats and loss of recharge areas. As part of Delaware's Source Water and Assessment Protection Program, wellhead protection areas (WHPAs) were delineated for the 15 largest public supply wells operated by three public water systems. The WHPAs are derived from analysis of results of dozens of steady-state ground-water flow simulations. The simulations were performed with a Visual MODFLOW-based 6-layer, 315,600-node model coupled with GIS-based data on land cover, ground-water recharge and resource potentials, and other base maps and aerial imagery. Because the model was operated under steady-state conditions, long-term average pumping rates were used in the model. The flow model includes four boundary types (constant head, constant flux, head-dependant flux, and no flow), with layers that represent the complex hydrogeologic conditions based on aquifer characterizations. The model is calibrated to within a 10% normalized root mean squared error of the observed water table.

RI64 Results of Hydrogeologic Studies of the Cypress Swamp Formation, Delaware

RI64 Results of Hydrogeologic Studies of the Cypress Swamp Formation, Delaware

The Cypress Swamp Formation is the surficial geologic unit in south-central Sussex County, Delaware. Detailed hydrologic observations made as part of four separate studies between 1995 and 1999 show that the Cypress Swamp Formation consists of a complex assemblage of moderately permeable sands and low permeability organic and inorganic silts and clays that form a heterogeneous shallow subsurface hydrologic system that is between about 5 and 15 feet thick. Aquifer tests show that hydraulic conductivity ranges between 0.55 and 40 ft/day, with an arithmetic mean of 13 feet/day.

RI57 Evaluation of the Stream-Gaging Network in Delaware

RI57 Evaluation of the Stream-Gaging Network in Delaware

The stream-gaging network in Delaware is a major component of many types of hydrologic investigations. To ensure that the network is adequate for meeting multiple data needs by a variety of users, it must represent the range of hydrologic conditions and land-use types found in Delaware, and include enough stations to account for hydrologic variability. This report describes the current stream-gaging network in Delaware and provides an evaluation of its representativeness for the State.

RI52 Quality and Geochemistry of Ground Water in Southern New Castle County, Delaware

RI52 Quality and Geochemistry of Ground Water in Southern New Castle County, Delaware

Water samples were collected from 63 wells in southern New Castle County to assess the occurrence and distribution of dissolved inorganic chemicals in ground water. Rapid growth is projected for the study area, and suitable sources of potable drinking water will need to be developed. The growth in the study area could also result in degradation of water quality. This report documents water quality during 1991-92 and provides evidence for the major geochemical processes that control the water quality.

RI51 Herbicides in Shallow Ground Water at Two Agricultural Sites in Delaware

RI51 Herbicides in Shallow Ground Water at Two Agricultural Sites in Delaware

Several common herbicides used on corn and soybeans were detected in ground water at two agricultural sites in Delaware as part of a study of the distribution of herbicides in shallow ground water and the environmental factors affecting their occurrence.

RI49 Results of the Coastal Sussex County, Delaware Ground-Water Quality Survey

RI49 Results of the Coastal Sussex County, Delaware Ground-Water Quality Survey

The results of this investigation of the Columbia aquifer in coastal Sussex County, Delaware, provide some of the data necessary to evaluate the condition of the area's primary source of fresh water. Chemical analyses of water samples from domestic, agricultural, public, and monitoring wells document the effects of past and present land use practices. Groundwater flow paths and flow systems are inferred from flow-net analysis, ground-water chemistry, and isotopic composition.

RI48 Geologic And Hydrologic Studies of the Oligocene - Pleistocene Section near Lewes, Delaware

RI48 Geologic And Hydrologic Studies of the Oligocene - Pleistocene Section near Lewes, Delaware

Borehole Oh25-02, located about 3 miles southwest of Lewes, Delaware, ends at a total depth of 1,337 ft in a mid-Oligocene glauconitic silt unit. It penetrated 317 ft of glauconitic sands and silts between the base of the Calvert Formation at a depth of 1,020 ft and total depth. A hiatus at 1,218 ft separates an outer neritic lower Miocene interval (Globorotalia kugleri Zone) above it from a deep upper bathyal mid-Oligocene (G. opima opima Zone) section below; the lower section is characterized by abundant large uvigerinid benthic foraminiferal species representing the transition from Uvigerina tumeyensis to Tiptonina nodifera. Similar uvigerinid assemblages identify the mid-Oligocene unit in boreholes near Bridgeville and Milford, Delaware; Cape May, New Jersey; and Ocean City, Maryland. Updip from these boreholes, the Calvert Formation, of latest Oligocene-middle Miocene age in Delaware, unconformably overlies middle Eocene glauconitic sands of the Piney Point Formation. The juxtaposition of the downdip mid-Oligocene rocks against the updip middle Eocene rocks can best be explained by a fault between the two regions.

This page tagged with:

RI43 Estimate of Direct Discharge of Fresh Ground Water to Rehoboth and Indian River Bays

RI43 Estimate of Direct Discharge of Fresh Ground Water to Rehoboth and Indian River Bays

The results of water-budget and flow-net model calculations indicate that the rate of fresh ground-water discharge into Rehoboth and Indian River bays is in the range of 21 to 43 million gallons per day. The estimates should be used only as gross indicators of actual conditions because of data gaps and the simplifying assumptions used in the models. However, the estimated discharge rates are significant and useful studies of the water budget of the Bays.

RI41 Hydrogeology and Geochemistry of the Unconfined Aquifer, West-Central and Southwestern Delaware

RI41 Hydrogeology and Geochemistry of the Unconfined Aquifer, West-Central and Southwestern Delaware

The unconfined aquifer is the major source of water supply in west-central and southwestern Delaware. The aquifer, which is composed of quartz sand, gravel, clay, and silt, ranges in thickness from 20 to 200 feet. The water table ranges from land surface to about 20 feet below land surface. Analyses of water from wells distributed throughout the area were used to study processes controlling the chemical quality of the water in the unconfined aquifer.

SP14 Basic Hydrologic Data for Coastal Sussex County, Delaware

SP14 Basic Hydrologic Data for Coastal Sussex County, Delaware

There is no abstract on file for this publication.

SP10 Selected Papers on the Geology of Delaware

SP10 Selected Papers on the Geology of Delaware

The Delaware Academy of Science has been instrumental in informing Delaware citizens about science and utilization of local resources. Since 1970 the annual meeting of the Delaware Academy of Science has been used as a time for presentation of ongoing research in various areas of science in the Delaware region. The proceedings of these meetings have resulted in publication of transactions of the Delaware Academy of Science. The 1976 annual meeting focused on aspects of the geology of Delaware. Members of the Delaware Geological Survey and the Geology Department at the University of Delaware contributed papers in their specific disciplines. This volume presents an overview of studies of geological features and processes of evolution of the geology of Delaware. Although this collection of papers does not represent an all-inclusive study of the subject, the selections included in this volume highlight past, present, and future trends in the study of Delaware's geology. It is hoped that the combined bibliographies of all the papers will provide a comprehensive view of the literature for further investigation into the geology of Delaware.

Evaluation of Rapid Infiltration Basin Systems (RIBS)

Diagram of a Rapid Infiltration Basin Systems (RIBS)
Project Contact(s):

This study has evaluated pre-treatment and physical and geochemical components of rapid infiltration basin systems (RIBS). The project was begun in 2008 with an evaluation of performance of treatment plants associated with RIBS in Delaware, Massachusetts, North Carolina, and New Jersey. Field and simulation evaluations of a RIBS located at Cape Henlopen State Park were completed in 2011. Simulation studies of infiltration and nitrogen cycling in the vadose zone were completed in early 2013. Multiple conference presentations, reports, and articles have been released.

Groundwater Resources of Sussex County (with an update for Kent County)

Project Contact(s):

This project is an integrated geologic/hydrologic study that will update our knowledge of the unconfined aquifers, confined aquifers, and groundwater resources of Sussex County. In addition, this project will utilize the results of recently completed study of the aquifer geology of Kent County (McLaughlin and Velez, 2005) to better define the groundwater resources of Kent County. The products to be produced by this study include aquifer depth and thickness maps and geologic cross sections for Sussex County. Products will also include a summary of basic hydrologic characteristics of aquifers in Kent and Sussex County and an analysis of water use for each aquifer.

OFR47 Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River

OFR47 Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River

Digital watershed and bay polygons for use in geographic information systems were created for Rehoboth Bay, Indian River, and Indian River Bay in southeastern Delaware. Polygons were created using a hierarchical classification scheme and a consistent, documented methodology that enables unambiguous calculations of watershed and bay surface areas within a geographic information system. The watershed boundaries were delineated on 1:24,000-scale topographic maps. The resultant polygons represent the entire watersheds for these water bodies, with four hierarchical levels based on surface area. Bay boundaries were delineated by adding attributes to existing polygons representing water and marsh in U.S. Geological Survey Digital Line Graphs of 1:24,000-scale topographic maps and by dissolving the boundaries between polygons with similar attributes. The hierarchy of bays incorporates three different definitions of the coastline: the boundary between open water and land, a simplified version of that boundary, and the upland-lowland boundary. The polygon layers are supplied in a geodatabase format.

B19 Geology and Hydrology of the Cockeysville Formation Northern New Castle County, Delaware

B19 Geology and Hydrology of the Cockeysville Formation Northern New Castle County, Delaware

The effect of rapid growth in the Hockessin and Pleasant Hill areas in northern Delaware has caused concern about possible declines in ground-water recharge to the underlying Cockeysville Formation. The Cockeysville is a major source of ground water (aquifer) in the Hockessin area from which about 1.5 million gallons of water per day is withdrawn for public water supply, even though it receives recharge over a relatively small area of 1.6 square miles. The Cockeysville in the Pleasant Hill area is currently used as a source at water supply for individual domestic users and one school. Results of ground-water exploration in the Pleasant Hill area suggest that the Cockeysville is capable of yielding several hundreds of gallons per minute to individual wells for water supply. A two-year investigation was undertaken to map the extent of the Cockeysville Formation and address questions of long-term ground-water yields. the sources of recharge, and the effects of additional development on ground-water supplies. Results of various field studies were integrated to determine the basic geologic framework and those elements that particularly affect ground-water supply.

B16 Ground-Water Resources of the Piney Point and Cheswold Aquifers in Central Delaware as Determined by a Flow Model

B16 Ground-Water Resources of the Piney Point and Cheswold Aquifers in Central Delaware as Determined by a Flow Model

A quasi three-dimensional model was constructed to simulate the response of the Piney Point and Cheswold aquifers underlying Kent County, Delaware to ground-water withdrawals. The model included the Magothy, Piney Point, Cheswold, and unconfined aquifers, and was calibrated using historical pumpage and water-level data. Model calibration was accomplished through the use of both steady-state and transient-state simulations.

B14 Hydrology of the Columbia (Pleistocene) Deposits of Delaware: An Appraisal of a Regional Water-Table Aquifer

B14 Hydrology of the Columbia (Pleistocene) Deposits of Delaware: An Appraisal of a Regional Water-Table Aquifer

The Columbia (Pleistocene) deposits of Delaware form a regional water-table aquifer, which supplies about half the ground water pumped in the State. The aquifer is composed principally of sands which occur as channel fillings in northern Delaware and as a broad sheet across central and southern Delaware. The saturated thickness of the aquifer ranges from a few feet in many parts of northern Delaware to more than 180 feet in southern Delaware. Throughout 1,500 square miles of central and southern Delaware (75 percent of the State's area), the saturated thickness ranges from 25 to 180 feet and the Columbia deposits compose all or nearly all of the water-table aquifer.

B13 Geology, Hydrology, and Geophysics of Columbia Sediments in the Middletown-Odessa Area, Delaware

B13 Geology, Hydrology, and Geophysics of Columbia Sediments in the Middletown-Odessa Area, Delaware

Columbia sediments in the Middletown-Odessa area are composed of boulders, gravels, sands, silts and clays. These sediments are exposed in four gravel pits where their structures and textures were studied. Subsurface geology was interpreted on the basis of the well-log data from 40 holes drilled in the area of study. Columbia sediments were laid upon a surface made up of the greensands of the Rancocas Formation (Paleocene – Eocene age). The contact between the Rancocas and Columbia Formations is an erosional unconformity.

B8 Water Resources of Sussex County, Delaware

B8 Water Resources of Sussex County, Delaware

Sussex County is in the Atlantic Coastal Plain. Its relatively flat, featureless topography is characterized by two terrace-like surfaces; the lower one rises from sea level to about 40 feet above sea level, and the higher one rises inland from 40 to about 60 feet above sea level. Peculiar landforms of low relief, broad ovals, similar to the "Carolina bays," and to the "New Jersey basins" are common on the sandy flat divides in Sussex County. Hydrologically, they are sites of much ground-water discharge, by evapotranspiration, from meadow and marsh of lush vegetation.

B6 The Water Resources of Northern Delaware

B6 The Water Resources of Northern Delaware

Northern Delaware, the area above the Chesapeake and Delaware Canal in New Castle County, is an area of rapidly growing population and expanding industry. In some places the demand for water has reached or exceeded the capacity of the existing facilities creating apparent water shortages. Many agencies, both public and private, are attempting to alleviate these shortages; studies are being made and reports prepared for immediate action as well as long-term planning. It is the purpose of this report to examine on a long-range basis the water resources of the northern Delaware area. This examination indicates that the surface-water and groundwater resources of the area far exceed the 72.8mgd (million gallons per day) used during 1955. The amount of ground water potentially available in the area is estimated to be at least 30 mgd and the amount of surface water potentially available depends principally on the amount of storage that may be feasible economically. Storage of 3 million gallons per square mile would provide an allowable draft rate of 140 mgd with a deficiency at average intervals of ten years, while storage of 30 million gallons per square mile would raise the allowable draft to 250 mgd, which is about half of the mean annual discharge. In addition to the fresh-water resources, saline water from the Delaware River and its tidal estuaries is available in almost unlimited quantity for cooling, fire fighting, some types of washing, and other purposes.