Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "groundwater"

RI17 Ground-Water Geology of the Delaware Atlantic Seashore

RI17 Ground-Water Geology of the Delaware Atlantic Seashore

The need for locating additional sources of ground water for the Delaware Atlantic seashore, a predominantly recreation-oriented area, is indicated by an expanding population in the belt between Philadelphia, Pennsylvania and Washington, D.C., combined with increasing leisure time. Present water use in the shore area is approximately 4 million gallons per day and will reach 9.3 million gallons per day by the year 2000. A new geologic interpretation of the occurrence of deep aquifers in the Delaware Atlantic seashore area is presented. Recent data from deep wells has enabled the construction of a more accurate geologic framework upon which the hydrologic data are superimposed. Correlation of Miocene sands concludes that the Manokin aquifer lies at greater depths in southeastern Delaware than previously thought.

RI15 General Ground-Water Quality in Fresh-Water Aquifers of Delaware

RI15 General Ground-Water Quality in Fresh-Water Aquifers of Delaware

Information on ground-water quality in Delaware has become critical for three reasons: (1) increased water demand, (2) need for a better understanding of ground-water flow patterns, (3) need for a "base" against which future quality changes can be measured. Analyses of about 150 water quality samples from wells show that Delaware's fresh ground waters are suitable for most purposes. High iron content may occur, however, in wells tapping the Columbia and the Potomac formations. Overall, total dissolved solids in Delaware aquifers are relatively low except in the Cheswold and Frederica aquifers (Miocene), and possibly parts of the Piney Point Formation (Eocene).

B1 Ground-Water Problems in Highway Construction and Maintenance

B1 Ground-Water Problems in Highway Construction and Maintenance

This report discusses the occurrence of ground water in relation to certain problems in highway construction and maintenance. These problems are: the subdrainage of roads; quicksand; the arrest of soil creep in road cuts; the construction of lower and larger culverts necessitated by the farm-drainage program; the prevention of failure of bridge abutments and retaining walls; and the watercement ratio of sub-water-table concrete. Although the highway problems and suggested solutions are of general interest, they are considered with special reference to the State of Delaware, in relation to the geology of that State. The new technique of soil stabilization by electroosmosis is reviewed in the hope that it might find application here in road work and pile setting. Field application by the Germans and Russians is reviewed.

This page tagged with:

HM12 Ground-Water Recharge Potential Sussex County, Delaware

HM12 Ground-Water Recharge Potential Sussex County, Delaware

The ground-water recharge potential map of Sussex County, Delaware, is a compilation of 1:24,000-scale maps of the water-transmitting properties of sediments in the interval between land surface and 20 ft below land surface. Water-transmitting properties are a key factor in determining the amount of water that recharges Delaware’s aquifers and the susceptibility of aquifers used as sources of water supply to contamination from near-surface pollutant sources. The mapping methodology was developed by Andres (1991) for the geologic characteristics of the Atlantic Coastal Plain portion of Delaware. Mapping and methods development started in 1990 and the final maps were completed in 2002 (Andres et al., 2002). Additional information about the map and methodology and a list of cited references are presented on the reverse side. The mapping program was funded by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

HM11 Ground-Water Recharge Potential Kent County, Delaware

Ground-Water Recharge Potential Kent County, Delaware

The ground-water recharge potential map of Kent County, Delaware, is a compilation of 1:24,000-scale maps of the water-transmitting properties of sediments in the interval between land surface and 20 ft below land surface. Water-transmitting properties are a key factor in determining the amount of water that recharges Delaware’s aquifers and the susceptibility of aquifers used as sources of water supply to contamination from near-surface pollutant sources. The mapping methodology was developed by Andres (1991) for the geologic characteristics of the Atlantic Coastal Plain portion of Delaware. Mapping and methods development started in 1990 and the final maps were completed in 2002 (Andres et al., 2002). Additional information about the map and methodology and a list of cited references are presented on the reverse side. The mapping program was funded by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River (OFR 47)

Digital Watershed and Bay Boundaries for Rehoboth Bay, Indian River Bay, and Indian River (OFR 47)

Digital watershed and bay polygons for use in geographic information systems were created for Rehoboth Bay, Indian River, and Indian River Bay in southeastern Delaware. Polygons were created using a hierarchical classification scheme and a consistent, documented methodology that enables unambiguous calculations of watershed and bay surface areas within a geographic information system. The watershed boundaries were delineated on 1:24,000-scale topographic maps. The resultant polygons represent the entire watersheds for these water bodies, with four hierarchical levels based on surface area. Bay boundaries were delineated by adding attributes to existing polygons representing water and marsh in U.S. Geological Survey Digital Line Graphs of 1:24,000-scale topographic maps and by dissolving the boundaries between polygons with similar attributes. The hierarchy of bays incorporates three different definitions of the coastline: the boundary between open water and land, a simplified version of that boundary, and the upland-lowland boundary. The polygon layers are supplied in a geodatabase format.

EPSCoR seed grants awarded to environmental researchers

Tom McKenna measuring subsurface temperature along the shoreline of Indian River in Sussex County, Delaware. Photo by Doug Miller

With a focus on environmental issues important to the state, the Delaware National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) office has awarded five seed grants to investigators whose projects aim to solve environmental problems in Delaware.

RI9 Ground-Water Levels in Delaware January, 1962 - June, 1966

RI9 Ground-Water Levels in Delaware January, 1962 - June, 1966

This report deals with fluctuations in nine observation wells during the period 1960 - 1966. These wells are part of a state-wide ground-water monitoring network and are located in areas of little or no pumping. Eight of the wells respond to water-table conditions; the ninth well appears to reflect artesian conditions.
Although precipitation throughout Delaware was generally below average during the period covered by this report, annual average water levels declined very little in the wells reported on here. There is some evidence, however, for a lowering of water-table levels by three to four feet during the period 1960 - 1962.

RI2 High-Capacity Test Well Developed at the Air Force Base, Dover, Delaware

RI2 High-Capacity Test Well Developed at the Air Force Base, Dover, Delaware

A thick aquifer of Eocene age underlies the Dover area, Delaware at depths ranging from 250 to 400 feet below the land surface. The aquifer is about 250 feet thick beneath the Dover Air Force Base and is composed of fairly uniform medium to fine glauconitic quartz sand. The static water level in a test well at the base was 18 feet below the land surface, or 5.7 feet above sea level, on April 17, 1957. The yield of the test well was about 300 gpm (gallons per minute), and the specific capacity at the end of a 12-hour pumping period was 8.3 gpm per foot of drawdown.

DGS Publications

The core of much DGS work culminates in the release of data and findings in official DGS publications, including Open File Reports, Reports of Investigations, Geologic Maps, Hydrologic Maps, and Bulletins.

DGS reports on hydrogeology of southern New Castle County

OFR49 Hydrologeologic Framework Of Southern New Castle County

The Delaware Geological Survey (DGS) at the University of Delaware has released a new technical report on the hydrogeology of southern New Castle County that documents results of an intensive review and analysis of published information and existing geologic and hydrologic data obtained from DGS borehole records and sample library.

DGS issues report on well water quality survey

OFR48 Results Of The Domestic Well Water-Quality Study

The Delaware Geological Survey (DGS) at the University of Delaware has released a new technical report that documents technical aspects of an intensive survey, review and analysis of existing ground-water quality data obtained from samples collected from more than 200 shallow domestic and small public wells to determine the extent to which toxic and carcinogenic compounds are present in shallow ground water.

DGS issues report on groundwater discharge areas

RI74 Locating Ground-Water Discharge Areas In Rehoboth And Indian River Bays And Indian River, Delaware Using Landsat 7 Imagery

The Delaware Geological Survey (DGS) at the University of Delaware has released a new technical report that identifies locations of groundwater discharge to estuaries and determines locations of discharge into the Inland Bays.