Share

DGS Annual Report

DGS Annual Report of Programs and Activities.

Click here to download!

Site content related to keyword: "groundwater"

Groundwater Station: DGS Well Ec32-07

DGS Well Ec32-07

Station Type: 
Groundwater
Period of Record: 
1966 to present
Frequency: 
Quarterly
Map County: 
New Castle County
Map Location: 
39.545398, -75.633300

Groundwater Station: DGS Well Bc43-01

DGS Well Bc43-01

Station Type: 
Groundwater
Period of Record: 
1974 to present
Frequency: 
Quarterly
Map County: 
New Castle County
Map Location: 
39.781700, -75.625099

Presentation on land application of waste water

Scott Andres of the Delaware Geological Survey presented “Land application of wastewater” and participated in a panel discussion of land use effects on water resources at a forum sponsored by the Sussex County League of Women Voters in Georgetown, Del., Jan 13.
Also, Andres presented “Groundwater Resources and Ag Water Use in Delaware” at the irrigation session during Delaware Ag Week in Harrington, Del., Jan 20.

Hydrogeologic Resources for Delaware

Brandywine Creek in Northern Delaware

Hydrogeologic data and information for Delaware. This includes the Water Conditions Report, groundwater well data, links to real-time data from DEOS and USGS, and other general information about Delaware's hydrogeology.

Groundwater Station: DGS Well Qe44-01

DGS Well Qe44-01

Station Type: 
Groundwater
Period of Record: 
1959 to Present
Frequency: 
Monthly
Map County: 
Sussex County
Map Location: 
38.527698,-75.433502

Groundwater Station: DGS Well Mc51-01a

DGS Well Mc51-01a

Station Type: 
Groundwater
Period of Record: 
1958 to Present
Frequency: 
Monthly
Map County: 
Sussex County
Map Location: 
38.845401,-75.665496

Groundwater Station: DGS Well Hb14-12

DGS Well Hb14-12

Station Type: 
Groundwater
Period of Record: 
1957 to Present
Frequency: 
Monthly
Map County: 
New Castle County
Map Location: 
39.330398,-75.685203

Groundwater Station: DGS Well Db24-18

DGS Well Db24-18

Station Type: 
Groundwater
Period of Record: 
1957 to Present
Frequency: 
Monthly
Map County: 
New Castle County
Map Location: 
39.648700, -75.697502

Integration of groundwater monitoring into Delaware's water resources programs

Scott Andres, Thomas McKenna and Changming He of the Delaware Geological Survey presented "Integration of Groundwater Monitoring into Delaware's Water Resources Programs" at the 15th annual Maryland Water Monitoring Council Conference, Dec. 3, at North Linthicum, Md.

This page tagged with:

Andres presented at the Delaware Rural Water Association and Delaware Clean Water Advisory Council

A. Scott Andres, Delaware Geological Survey, presented “Agricultural Water Use in Delaware” and “Rapid Infiltration Basin Systems Research Introduction” at the Delaware Rural Water Association and Delaware Clean Water Advisory Council, Nov. 18, Milford, Del.

This page tagged with:

Digital Water-Table Data for New Castle County, Delaware (Digial Data Product No. 05-04)

Digital Water-Table Data for New Castle County, Delaware

This digital product contains gridded estimates of water-table (wt) elevation and depth to water (dtw) under dry, normal, and wet conditions for New Castle County, Delaware excluding the Piedmont. Files containing the point data used to create the grids are also included. This work is the final component of a larger effort to provide estimates of water-table elevations and depths to water for the Coastal Plain portion of Delaware. Mapping was supported by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

These grids were produced with the same multiple linear regression (MLR) method as Andres and Martin (2005). Briefly, this method consists of: identifying dry, normal, and wet periods from long-term observation well data (Db24-01, Hb14-01); estimating a minimum water table (Sepulveda, 2002) by fitting a localized polynomial surface to elevations of surface water features (e.g., streams, swamps, and marshes); and, computing a second variable in the regression from water levels observed in wells. Separate MLR equations were determined for dry, normal, and wet periods and these equations were used in ArcMap v.9 (ESRI, 2004) to estimate grids of water-table elevations and depths to water. New Castle County was divided into a northern section and a southern section with the C&D Canal being the natural line of demarcation. A minimum water-table surface was then calculated for both the northern and southern sections of New Castle County. However, dividing the county, as well as the water-level data, into two sections did not result in sufficient regression coefficients for use in the estimation process. Therefore, the data (minimum water-table surface and water-level data) were merged together and the water-table elevation and depth to water grids for dry, normal, and wet conditions were then calculated for the county as a whole.

Digital Water-Table Data for Kent County, Delaware (Digital Data Product No. 05-03)

Digital Water-Table Data for Kent County, Delaware

This digital product contains gridded estimates of water-table (wt) elevation and depth to water (dtw) under dry, normal, and wet conditions for Kent County, Delaware. Files containing the point data used to create the grids are also included. This work is the final component of a larger effort to provide estimates of water-table elevations and depths to water for the Coastal Plain portion of Delaware. Mapping was supported by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

These grids were produced with the same multiple linear regression (MLR) method as Andres and Martin (2005). Briefly, this method consists of: identifying dry, normal, and wet periods from long-term observation well data (Hb14-01, Jd42-03, Mc51-01, Md22-01); estimating a minimum water table (Sepulveda, 2002) by fitting a localized polynomial surface to elevations of surface water features (e.g., streams, swamps, and marshes); and, computing a second variable in the regression from water levels observed in wells. A separate MLR equation was determined for dry, normal, and wet periods and these equations were used in ArcMap v.9 (ESRI, 2004) to estimate grids of water-table elevations and depths to water. Kent County was divided into three regions (south, central, north). A minimum water-table surface was calculated for each of these areas and were merged together to create a single minimum water-table surface for the entire county. This grid was filtered and smoothed to eliminate edge effects that occurred at the boundaries between each of the three regions. Water-table elevation and depth to water grids for dry, normal, and wet conditions were then calculated for the county as a whole.

Digital Water-Table Data for Sussex County, Delaware (Digital Data Product No. 05-01)

Digital Water-Table Data for Sussex County, Delaware

This digital product contains gridded estimates of water-table (wt) elevation and depth to water (dtw) under dry, normal, and wet conditions for Sussex County, Delaware. Files containing the point data used to create the grids are also included. This work is the final component of a larger effort to provide estimates of water-table elevations and depths to water for the Coastal Plain portion of Delaware. Mapping was supported by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

These grids were produced with the same multiple linear regression (MLR) method as Andres and Martin (2005). Briefly, this method consists of: identifying dry, normal, and wet periods from long-term observation well data (Nc45-01, Ng11-01, Qe44-01); estimating a minimum water table (Sepulveda, 2002) by fitting a localized polynomial surface to elevations of surface water features (e.g., streams, swamps, and marshes); and computing a second variable in the regression from water levels observed in wells. A separate MLR equation was determined for dry, normal, and wet periods, and these equations were used in ArcMap v.9 (ESRI, 2004) to estimate grids of water-table elevations and depths to water. Grids produced in this project were merged with those previously completed for eastern Sussex and smoothed to minimize edge effects.

First 1:24,000 scale Hydrologic Map Published

First 1:24,000 scale Hydrologic Map Published
Date: Apr 1972

Geohydrology of the Dover Area, Delaware
Hydrologic Map Series No. 1
By Ken D. Woodruff
1972

Nanticoke Watershed Water-Quality Database (Data Product No. 05-02)

Nanticoke River

The Nanticoke Watershed Water-Quality Database (NWWWQDB) is used to
store, manage, and retrieve water-quality data generated by the “Nanticoke River
Watershed” project. The database contains information on sampling stations, samples,
and field and laboratory analyses, queries to extract and analyze data, forms to input and
edit data, a main menu to navigate to forms and specific queries, and a few formatted
report templates. The database is in Microsoft Access 2003 format. Table, field, and table
relationship metadata are stored in the database as properties of those objects. The
software's metadata reporting options can be used to view the information.

Delaware Inland Bays Tributary Total Maximum Daily Load Water-Quality Database (Data Product No. 02-02)

Delaware Inland Bays Sampling Locations

The Delaware Inland Bays Water-Quality Database (DIBWQDB) is used to store,
manage, and retrieve water-quality data generated by the “Nutrient Inputs as a Stressor
and Net Nutrient Flux as an Indicator of Stress Response in Delawares’ Inland Bays
Ecosystem” (CISNet) and the “Inland Bays Tributary Total Maximum Daily Load”
(IBTMDL) projects. It contains information on sampling stations, samples, and field and
laboratory analyses, queries to extract and analyze data, forms to input and edit data, a
main menu to navigate to forms and specific queries, and a few formatted report
templates. The database is in Microsoft Access 2003 format. Table, field, and table
relationship metadata are stored in the database as properties of those objects. The
software's metadata reporting options can be used to view the information.

Recent and Historical Groundwater Level Data

Recent and Historical Groundwater Level Data. Data accessible on this page are a subset of DGS holdings. Click on the chart link to display a hydrograph or the data link to download all observations for the period of record.

Groundwater affected by development, scientists say

Groundwater is both the source of drinking water and the method of disposing of wastewater, said Scott Andres, hydrogeologist with the Delaware Geological Survey. There is plenty of water to be had, he said, but the challenge is protecting public and environmental health.

IS4 Domestic Water Systems

Domestic Water Systems

Thousands of homeowners in Delaware currently rely on individual wells and water systems to provide water. In addition, hundreds of new wells and systems are constructed each year to provide water for those not served by public water systems. Methods used to construct water wells in Delaware are discussed in DGS Information Series No. 2 (Domestic Water Well
Construction). Domestic water systems are described herein.