Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "groundwater recharge"

Presentation on RIBS at Fall 2012 AGU meeting

A poster "Modeling Engineered Approaches to Enhance Denitrification under Rapid Infiltration Basins" resulting from a collaborative research project between Paul Imhoff, Maryam Akhavan (UD Civil&Environmental Engineering), A. Scott Andres (DGS), and Stefan Finsterle (Lawrence Berkley National Lab) was presented at the Fall 2012 AGU meeting in San Francisco, CA on Dec. 3.

Effect of tropical storms Irene and Lee on groundwater levels in well Qb35-08 near Laurel, Delaware

Rapid, significant groundwater recharge occurred in response to tropical storms Irene and Lee.a

Effect of tropical storms Irene and Lee on groundwater levels in well Qb35-08

Plot of groundwater levels, groundwater temperature, and rainfall near Laurel, Delaware

Tropical storms Irene and Lee caused a 9-1/2 foot rise of the water table in western Sussex County near Laurel. Groundwater levels and temperatures in Qb35-08 were collected with an automated pressure-temperature datalogger system. At the same time, rainfall and soil moisture data were recorded by the DEOS Laurel Airport station located approximately 5 miles from the well.

Delaware Geological Survey releases new geologic map of Harbeson area

The Delaware Geological Survey (DGS) has published a new geologic map of the area east of Georgetown in Sussex County entitled Geologic Map of the Harbeson Quadrangle, Delaware. Geologic Map 17 presents the results of research by Kelvin W. Ramsey and Jaime L. Tomlinson of the DGS.

The map shows and describes the geologic units found at the land surface and in the shallow subsurface in the map area. The map includes cross sections that show stratigraphic units that lie beneath the surficial units and detailed descriptions and ages of all units presented on the map.

DGS releases new geologic map of Rehoboth Beach area

The Delaware Geological Survey (DGS) has published a new geologic map of the Rehoboth Beach area in eastern Sussex County entitled Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware. Geologic Map 16 presents the results of research by Kelvin W. Ramsey of the DGS.

DGS Digital Datasets

In the same ways as our printed publications, digital data released by the DGS represent the results of original professional research and as such are used by professionals and the public.

RI66 Ground-Water Recharge Potential Mapping in Kent and Sussex Counties, Delaware

RI66 Ground-Water Recharge Potential Mapping in Kent and Sussex Counties, Delaware

Ground-water recharge potential maps support decision-making and policy development in land use, water-resources management, wastewater disposal systems development, and environmental permitting in state, county, and local governments. Recently enacted state law requires that counties and towns with more than 2,000 residents provide protection to areas with excellent recharge potential in comprehensive land use plans. Approximately 14 percent of Kent County and 8 percent of Sussex County have areas with excellent recharge potential. Ground-water recharge potential maps show land areas characterized by the water-transmitting capabilities of the first 20 feet below land surface. Ground-water recharge potential mapping in Kent and Sussex counties was done using geologic mapping techniques and over 6,000 subsurface observations in test borings, wells, borrow pits, natural exposures, and ditches. Hydraulic testing of more than 200 wells shows that the four recharge potential categories (excellent, good, fair, poor) can be used as predictors of the relative amounts and rates at which recharge will occur. Numerical modeling shows that recharge rates in areas with excellent recharge potential can be two to three times greater than rates in fair and poor recharge areas. Because of the association of recharge potential map categories with hydraulic properties, map categories are indicators of how fast contaminants will move and how much water may become contaminated. Numerical modeling of contaminant transport under different recharge potential conditions predicts that greater masses of contaminants move more quickly and affect greater volumes of water under higher recharge potential conditions than under lower recharge potential conditions. This information can be used to help prioritize and classify sites for appropriate remedial action.

RI65 Wellhead Protection Area Delineations for the Lewes-Rehoboth Beach Area, Delaware

RI65 Wellhead Protection Area Delineations for the Lewes-Rehoboth Beach Area, Delaware

Water supply in the rapidly developing Lewes and Rehoboth Beach areas of coastal Sussex County in Delaware is provided by more than 80 individual public water wells and hundreds of domestic wells. Significant concerns exist about the future viability of the ground-water resource in light of contamination threats and loss of recharge areas. As part of Delaware's Source Water and Assessment Protection Program, wellhead protection areas (WHPAs) were delineated for the 15 largest public supply wells operated by three public water systems. The WHPAs are derived from analysis of results of dozens of steady-state ground-water flow simulations. The simulations were performed with a Visual MODFLOW-based 6-layer, 315,600-node model coupled with GIS-based data on land cover, ground-water recharge and resource potentials, and other base maps and aerial imagery. Because the model was operated under steady-state conditions, long-term average pumping rates were used in the model. The flow model includes four boundary types (constant head, constant flux, head-dependant flux, and no flow), with layers that represent the complex hydrogeologic conditions based on aquifer characterizations. The model is calibrated to within a 10% normalized root mean squared error of the observed water table.

OFR34 Methodology for Mapping Ground-Water Recharge Areas in Delaware's Coastal Plain

OFR34 Methodology for Mapping Ground-Water Recharge Areas in Delaware's Coastal Plain

This report documents the development of a methodology for mapping ground-water recharge areas in Delaware's Coastal Plain. It is anticipated that the methodology presented herein will evolve as it is applied to other areas in the State and as computerized geographic information systems become more widely available. This report deals with methodology; the recharge area maps generated in the course of the research are available for review at the DGS.

OFR28 Potential for Ground-Water Recharge in the Coastal Plain of Northern New Castle County, Delaware

OFR28 Potential for Ground-Water Recharge in the Coastal Plain of Northern New Castle County, Delaware

This map was constructed primarily to indicate the possibilities for artificial recharge into both the surficial sediments of Quaternary age (exclusive of soils) and the older, immediately underlying sediments. However it can also be used to determine where natural recharge might be entering the ground most readily in those areas relatively free from impermeable cover. The surficial sediments include micaceous sands and gravels in the vicinity of the Fall Line derived from underlying crystalline rocks, Holocene marsh deposits, Delaware River sediments, and the Columbia Formation of Pleistocene age. The Columbia Formation is composed of poorly sorted sands with some gravels, silts and occasional clays. The unit is one of the most important ground-water reservoirs in New Castle County.

B16 Ground-Water Resources of the Piney Point and Cheswold Aquifers in Central Delaware as Determined by a Flow Model

B16 Ground-Water Resources of the Piney Point and Cheswold Aquifers in Central Delaware as Determined by a Flow Model

A quasi three-dimensional model was constructed to simulate the response of the Piney Point and Cheswold aquifers underlying Kent County, Delaware to ground-water withdrawals. The model included the Magothy, Piney Point, Cheswold, and unconfined aquifers, and was calibrated using historical pumpage and water-level data. Model calibration was accomplished through the use of both steady-state and transient-state simulations.

RI30 Ground-Water Levels in Delaware July, 1966 - December, 1977

RI30 Ground-Water Levels in Delaware July, 1966 - December, 1977

Water-level records from 13 observation wells in Delaware for the period July, 1966 - December, 1977 provide the bases for the analyses of water-level fluctuations. Water levels in shallow water-table wells generally rise from November to March, when recharge exceeds discharge, and decline during the warm growing season from May through September. Although water-levels in individual wells changed by as much as 11.17 feet during the 11.5 year period studied, the water-table system remained in a state of dynamic equilibrium and exhibited no permanent changes in aquifer storage. However, the water levels in three artesian observation wells have declined during the same 11.5 year period in response to high demands for ground water while levels in the other two artesian wells have risen slightly due to a reduction in ground-water discharge, or increase in ground-water recharge, or both. Nevertheless during the past several decades, water levels have declined, cones of depression have enlarged, and reductions in aquifer storage, have occurred in the Potomac aquifer in central and southeastern New Castle County, and the Piney Point and Cheswold aquifers in the Dover-Dover Air Force Base area. Therefore, future groundwater development in the artesian aquifers must be carefully planned and managed.

HM12 Ground-Water Recharge Potential Sussex County, Delaware

HM12 Ground-Water Recharge Potential Sussex County, Delaware

The ground-water recharge potential map of Sussex County, Delaware, is a compilation of 1:24,000-scale maps of the water-transmitting properties of sediments in the interval between land surface and 20 ft below land surface. Water-transmitting properties are a key factor in determining the amount of water that recharges Delaware’s aquifers and the susceptibility of aquifers used as sources of water supply to contamination from near-surface pollutant sources. The mapping methodology was developed by Andres (1991) for the geologic characteristics of the Atlantic Coastal Plain portion of Delaware. Mapping and methods development started in 1990 and the final maps were completed in 2002 (Andres et al., 2002). Additional information about the map and methodology and a list of cited references are presented on the reverse side. The mapping program was funded by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

HM11 Ground-Water Recharge Potential Kent County, Delaware

Ground-Water Recharge Potential Kent County, Delaware

The ground-water recharge potential map of Kent County, Delaware, is a compilation of 1:24,000-scale maps of the water-transmitting properties of sediments in the interval between land surface and 20 ft below land surface. Water-transmitting properties are a key factor in determining the amount of water that recharges Delaware’s aquifers and the susceptibility of aquifers used as sources of water supply to contamination from near-surface pollutant sources. The mapping methodology was developed by Andres (1991) for the geologic characteristics of the Atlantic Coastal Plain portion of Delaware. Mapping and methods development started in 1990 and the final maps were completed in 2002 (Andres et al., 2002). Additional information about the map and methodology and a list of cited references are presented on the reverse side. The mapping program was funded by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

RI2 High-Capacity Test Well Developed at the Air Force Base, Dover, Delaware

RI2 High-Capacity Test Well Developed at the Air Force Base, Dover, Delaware

A thick aquifer of Eocene age underlies the Dover area, Delaware at depths ranging from 250 to 400 feet below the land surface. The aquifer is about 250 feet thick beneath the Dover Air Force Base and is composed of fairly uniform medium to fine glauconitic quartz sand. The static water level in a test well at the base was 18 feet below the land surface, or 5.7 feet above sea level, on April 17, 1957. The yield of the test well was about 300 gpm (gallons per minute), and the specific capacity at the end of a 12-hour pumping period was 8.3 gpm per foot of drawdown.