Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "coastal geology"

B9 Stratigraphy of the Sedimentary Rocks of Delaware

B9 Stratigraphy of the Sedimentary Rocks of Delaware

The stratigraphy of the Coastal Plain of Delaware is discussed with emphasis placed upon an appraisal of the stratigraphic nomenclature. A revised stratigraphic column for Delaware is proposed. Rock stratigraphic units, based mainly on data from certain key wells, are described and the published names which have been or which might conceivably be applied to those units are reviewed. In each case a name is chosen and the reasons for the choice are stated. The relationships between the column established for Delaware and the recognized columns for adjacent states are considered. The rock units of the Coastal Plain of New Jersey, Delaware, and Maryland form an interrelated mass. However, profound facies changes do occur, particularly in the dip direction, but also along the strike. Thus, attempts to extend units established in the outcrop belt almost indefinitely into the subsurface have been unsatisfactory.

MS6 Cross Section of Pliocene and Quaternary Deposits Along the Atlantic Coast of Delaware

Cross Section of Pliocene and Quaternary Deposits Along the Atlantic Coast of Delaware

Exploration for sand resources for beach nourishment has led to an increase in the amount of geologic data available from areas offshore Delaware's Atlantic Coast. These data are in the form of cores, core logs, and seismic reflection profiles. In order to provide a geologic context for these offshore data, this cross section has been constructed from well and borehole data along Delaware's Atlantic coastline from Cape Henlopen to Fenwick Island. Placing the offshore data in geologic context is important for developing stratigraphic and geographic models for predicting the location of stratigraphic units found offshore that may yield sand suitable for beach nourishment. The units recognized onshore likely extend offshore to where they are truncated by younger units or by the present seafloor.

Delaware Offshore Geologic Inventory Map

Since 1992, the Delaware Geological Survey (DGS) has compiled a geologic database known as the Delaware Offshore Geologic Inventory (DOGI) that consists of sediment samples, radiocarbon and amino acid racemization dates, seismic profiles, and vibracores taken from the nearshore and inner continental shelf in state and federal waters. Most of the 366 vibracores are stored at the DGS on-site core and sample repository.

DGS Digital Datasets

In the same ways as our printed publications, digital data released by the DGS represent the results of original professional research and as such are used by professionals and the public.

RI68 Estimation of the Water Table for the Inland Bays Watershed, Delaware

RI68 Estimation of the Water Table for the Inland Bays Watershed, Delaware

A geographic information system-based study was used to estimate the elevation of the water table in the Inland Bays watershed of Sussex County, Delaware, under dry, normal, and wet conditions. Evaluation of the results from multiple estimation methods indicates that a multiple linear regression method is the most viable tool to estimate the elevation of the regional water table for the Coastal Plain of Delaware. The variables used in the regression are elevation of a minimum water table and depth to the minimum water table from land surface. Minimum water table is computed from a local polynomial regression of elevations of surface water features. Correlation coefficients from the multiple linear regression estimation account for more than 90 percent of the variability observed in ground-water level data. The estimated water table is output as a GIS-ready grid with 30-m (98.43 ft) horizontal and 0.305-m (1 ft) vertical resolutions.

RI67 The Cat Hill Formation and Bethany Formation of Delaware

RI67 The Cat Hill Formation and Bethany Formation of Delaware

Because of the rapid development occurring in coastal Delaware and the importance of ground water to the economy of the area, definition of formal lithostratigraphic units hosting aquifers and confining beds serves a useful purpose for resource managers, researchers, and consultants working in the area. The Pocomoke and Manokin are artesian aquifers pumped by hundreds of domestic and dozens of public wells along the Atlantic coast in Delaware and Maryland. These aquifers are being increasingly used for public water supply. Two formal lithostratigraphic units, the Cat Hill Formation and Bethany Formation, are established to supercede the Manokin formation and Bethany formation, respectively. In Delaware, these lithostratigraphic units host important aquifers—the Manokin, which occurs in the Cat Hill Formation, and the Pocomoke, which occurs in the Bethany Formation. Composite stratotypes of these units are identified in five drillholes located near Bethany Beach, Delaware.

RI65 Wellhead Protection Area Delineations for the Lewes-Rehoboth Beach Area, Delaware

RI65 Wellhead Protection Area Delineations for the Lewes-Rehoboth Beach Area, Delaware

Water supply in the rapidly developing Lewes and Rehoboth Beach areas of coastal Sussex County in Delaware is provided by more than 80 individual public water wells and hundreds of domestic wells. Significant concerns exist about the future viability of the ground-water resource in light of contamination threats and loss of recharge areas. As part of Delaware's Source Water and Assessment Protection Program, wellhead protection areas (WHPAs) were delineated for the 15 largest public supply wells operated by three public water systems. The WHPAs are derived from analysis of results of dozens of steady-state ground-water flow simulations. The simulations were performed with a Visual MODFLOW-based 6-layer, 315,600-node model coupled with GIS-based data on land cover, ground-water recharge and resource potentials, and other base maps and aerial imagery. Because the model was operated under steady-state conditions, long-term average pumping rates were used in the model. The flow model includes four boundary types (constant head, constant flux, head-dependant flux, and no flow), with layers that represent the complex hydrogeologic conditions based on aquifer characterizations. The model is calibrated to within a 10% normalized root mean squared error of the observed water table.

RI63 An Evaluation of Sand Resources, Atlantic Offshore, Delaware

RI63 An Evaluation of Sand Resources, Atlantic Offshore, Delaware

Lithologic logs from 268 vibracores taken from the Delaware Atlantic offshore were evaluated for sediment type and compatibility with historical beach sediment textures. A model of sand resource evaluation, known as "stack-unit mapping" (Kempton, 1981) was applied to all of the cores, and each core was labeled by its lithology in vertical sequence. The results are shown in detailed maps of the beach-quality sand resources offshore in state and federal waters. Results show significant quantities (approximately 54 million cubic yards) of excellent beach-quality sand sources within the three-mile state limit offshore Indian River Inlet, and within the Inner Platform and Detached Shoal Field geomorphic regions. In federal waters, sand is found on Fenwick Shoal Field and farther offshore Indian River Inlet on the Outer Platform (approximately 43.6 million cubic yards combined). Most of the beach-quality sand resources are believed to be reworked tidal delta deposits of a former Indian River Inlet during periods of lower sea level. Farther south, the resources are accumulations of recent surficial sands of the inner shelf (Detached Shoal Field and Fenwick Shoal Field) showing that the geomorphic region does influence sediment quality. This study found that paleochannels and bathymetry had no relationship to grain size. Multiple cut and fill episodes contributed to the diversity in grain sizes.

RI58 The Pliocene and Quaternary Deposits of Delaware: Palynology, Ages, and Paleoenvironments

RI58 The Pliocene and Quaternary Deposits of Delaware: Palynology, Ages, and Paleoenvironments

The surficial Pliocene and Quaternary sedimentary deposits of the Atlantic Coastal Plain of Delaware comprise several formal and informal stratigraphic units. Their ages and the paleoenvironments they represent are interpreted on the basis of palynological and lithologic data and, to a lesser degree, on geomorphology.

RI55 Geology of the Milford and Mispillion River Quadrangles

RI55 Geology of the Milford and Mispillion River Quadrangles

Investigation of the Neogene and Quaternary geology of the Milford and Mispillion River quadrangles has identified six formations: the Calvert, Choptank, and St. Marys formations of the Chesapeake Group, the Columbia Formation, and the Lynch Heights and Scotts Comers formations of the Delaware Bay Group. Stream, swamp, marsh, shoreline, and estuarine and bay deposits of Holocene age are also recognized. The Calvert, Choptank, and St. Marys formations were deposited in inner shelf marine environments during the early to late Miocene. The Columbia Formation is of fluvial origin and was deposited during the middle Pleistocene prior to the erosion and deposition associated with the formation of the Lynch Heights Formation. The Lynch Heights Formation is of fluvial and estuarine origin and is of middle Pleistocene age. The Scotts Corners Formation was deposited in tidal, nearshore, and estuarine environments and is of late Pleistocene age. The Scotts Corners Formation and the Lynch Heights Formation are each interpreted to have been deposited during more than one cycle of sea-level rise and fall. Latest Pleistocene and Holocene deposition has occurred over the last 11,000 years.

RI54 Radiocarbon Dates from Delaware: A Compilation

RI54 Radiocarbon Dates from Delaware: A Compilation

Radiocarbon dates from 231 geologic samples from the offshore, coastal, and upland regions of Delaware have been compiled along with their corresponding locations and other supporting data. These data now form the Delaware Geological Survey Radiocarbon Database.

RI73 Analysis and Summary of Water-Table Maps for the Delaware Coastal Plain

RI73  Analysis and Summary of Water-Table Maps for the Delaware Coastal Plain

A multiple linear regression method was used to estimate water-table elevations under dry, normal, and wet conditions for the Coastal Plain of Delaware. The variables used in the regression are elevation of an initial water table and depth to the initial water table from land surface. The initial water table is computed from a local polynomial regression of elevations of surface-water features. Correlation coefficients from the multiple linear regression estimation account for more than 90 percent of the variability observed in ground-water level data. The estimated water table is presented in raster format as GIS-ready grids with 30-m horizontal (~98 ft) and 0.305-m (1 ft) vertical resolutions. Water-table elevation and depth are key facets in many engineering, hydrogeologic, and environmental management and regulatory decisions. Depth to water is an important factor in risk assessments, site assessments, evaluation of permit compliance data, registration of pesticides, and determining acceptable pesticide application rates. Water-table elevations are used to compute ground-water flow directions and, along with information about aquifer properties (e.g., hydraulic conductivity and porosity), are used to compute ground-water flow velocities. Therefore, obtaining an accurate representation of the water table is also crucial to the success of many hydrologic modeling efforts. Water-table elevations can also be estimated from simple linear regression on elevations of either land surface or initial water table. The goodness-of-fits of elevations estimated from these surfaces are similar to that of multiple linear regression. Visual analysis of the distributions of the differences between observed and estimated water elevations (residuals) shows that the multiple linear regression-derived surfaces better fit observations than do surfaces estimated by simple linear regression.

Number of Pages: 
16

SP10 Selected Papers on the Geology of Delaware

SP10 Selected Papers on the Geology of Delaware

The Delaware Academy of Science has been instrumental in informing Delaware citizens about science and utilization of local resources. Since 1970 the annual meeting of the Delaware Academy of Science has been used as a time for presentation of ongoing research in various areas of science in the Delaware region. The proceedings of these meetings have resulted in publication of transactions of the Delaware Academy of Science. The 1976 annual meeting focused on aspects of the geology of Delaware. Members of the Delaware Geological Survey and the Geology Department at the University of Delaware contributed papers in their specific disciplines. This volume presents an overview of studies of geological features and processes of evolution of the geology of Delaware. Although this collection of papers does not represent an all-inclusive study of the subject, the selections included in this volume highlight past, present, and future trends in the study of Delaware's geology. It is hoped that the combined bibliographies of all the papers will provide a comprehensive view of the literature for further investigation into the geology of Delaware.

OFR41 Beach Sand Textures from the Atlantic Coast of Delaware

OFR41 Beach Sand Textures from the Atlantic Coast of Delaware

The purpose of this report is to characterize Delaware Atlantic Coast beach sand on the basis of sand texture data in order to identify geologic material suitable for beach nourishment.

This page tagged with:

OFR37 Summary Report: The Coastal Storm of December 10-14, 1992, Delaware and Maryland

OFR37 Summary Report: The Coastal Storm of December 10-14, 1992, Delaware and Maryland

On December 10, a low pressure system moved rapidly north-northwest from eastern North Carolina and Virginia, up the Chesapeake Bay to a position just west of Chestertown in Kent County, Maryland by 0700 on December 11. The system then moved irregularly to the southeast, stalled for several hours over Georgetown, Delaware, and proceeded offshore early on December 12. Approximate locations of the storm's track are shown on Figure 1. The storm had associated rain that contributed to some local stream flooding and high winds that created strong surf and waves. The waves were compounded by an astronomical high tide (full moon) to produce coastal flooding along Delaware Bay and some breaching of the dunes along the Atlantic coast. The position of the storm offshore blew north-northeast winds onto the coast and abnormally high tides continued through December 15.

This page tagged with:

OFR36 Summary Report: The Storm of January 4, 1992

OFR36 Summary Report: The Storm of January 4, 1992

On January 4, 1992 an intense storm moved from the east across the Delmarva Peninsula and the Chesapeake Bay. Its track was the result of the low pressure being pulled westward by a strong cold-cored upper low moving across Georgia and South Carolina. The storm exhibited tropical/subtropical characteristics on radar. Satellite photos indicate that an "eye" to the storm formed just prior to landfall. Landfall occurred over the southern Delmarva Peninsula just prior to the time of high tide (0648 at Ocean City, Md). The storm weakened rapidly as it moved over land areas with a secondary area redeveloping farther out to sea later in the day on the 4th. Approximate locations of the storm's track are given on Figure 1. As the storm moved across the Delmarva Peninsula perpendicular to the coast, Delaware was in the right-foreward quadrant to the north of the "eye" of the storm. This position typically produces the highest winds associated with a tropical storm. These winds created high waves that in conjunction with an astronomical high tide (new moon) produced strong surf and abnormally high tides along the shore. Rainfall from the storm in Delaware was not heavy enough to cause flooding of streams. Coastal flooding of marshes and low-lying areas did occur along the Inland Bays and along Delaware Bay.

This page tagged with:

SP26 Historical Coastline Changes of Cape Henlopen, Delaware

SP26 Historical Coastline Changes of Cape Henlopen, Delaware

Coastlines are not static features. They are shaped by the daily effects of wind, current, and wave activity. Over time, a coastline may move landward due to relative sea-level rise or low sediment supply, or seaward due to relative sea-level fall or an overabundance of sediment. Perhaps the most striking example of shoreline movement in Delaware is at Cape Henlopen which has grown northward approximately one mile in the last 160 years. Maps and aerial photographs show these changes.

Coastal Plain Rock Units (Stratigraphic Chart)

The geology of Delaware includes parts of two geologic provinces: the Appalachian Piedmont Province and the Atlantic Coastal Plain Province. The Piedmont occurs in the hilly northernmost part of the state and is composed of crystalline metamorphic and igneous rocks. This chart summarizes the age and distribution of the geologic units that are recognized in the state by the Delaware Geological Survey.