Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "coastal geology"

Delaware Geologic Research Symposium - April 14, 2015

The DGS is again hosting a research symposium with presentations on Delaware Geology. This meeting is targeting geoscience professionals as well as planners, engineers, and others that use geologic data.  Documentation for PG credits will be available for those attending. 

DGS Geologic Map No. 23 (Seaford West and Seaford East Quadrangles, Delaware) Dataset

DGS Geologic Map No. 23 (Seaford West and Seaford East Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 23 (Seaford West and Seaford East Quadrangles). The geological history of the surficial units of the Seaford East Quadrangle and the Delaware portion of the Seaford West Quadrangle was the result of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and the Carolina Bays in the map area, which modified the land surface. Mapping was conducted using field maps at a scale of 1:12,000 with 2-ft contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map. This map is an update of the surficial geology of DGS Geologic Map No. 9: Geology of the Seaford Area, Delaware (Andres and Ramsey, 1995), and is based on new field data in the map area and the mapping of adjacent quadrangles. The purpose of the update is to provide continuity of surficial stratigraphic units in adjacent quadrangles in light of additional data, such as LiDAR data not available in 1995 and revisions to the Quaternary stratigraphy of Sussex County (Ramsey, 2010a). Geologic interpretations of subsurface stratigraphy in Andres and Ramsey (1995), Andres, Ramsey, and Groot (1996), and Andres, Ramsey, and Schenck (1995) have not been revised. Surficial stratigraphic units depicted on this map supersede those of Andres and Ramsey (1995).

RI79 Simulation of Groundwater Flow and Contaminant Transport in Eastern Sussex County, Delaware With Emphasis on Impacts of Spray Irrigation of Treated Wastewater

Simulation of Groundwater Flow and Contaminant Transport in Eastern Sussex County, Delaware With Emphasis on Impacts of Spray Irrigation of Treated Wastewater

This report presents a conceptual model of groundwater flow and the effects of nitrate (NO3-) loading and transport on shallow groundwater quality in a portion of the Indian River watershed, eastern Sussex County, Delaware. Three-dimensional, numerical simulations of groundwater flow, particle tracking, and contaminant transport were constructed and tested against data collected in previous hydrogeological and water-quality studies.

The simulations show a bimodal distribution of groundwater residence time in the study area, with the largest grouping at less than 10 years, the second largest grouping at more than 100 years, and a median of approximately 29 years.

Historically, the principal source of nitrate to the shallow groundwater in the study area has been from the chemical- and manure-based fertilizers used in agriculture. A total mass of NO3- -nitrogen (N) of about 169 kg/day is currently simulated to discharge to surface water. As the result of improved N-management practices, after 45 years a 20 percent decrease in the mass of NO3- -N reaching the water table would result in an approximately 4 percent decrease in the mass of simulated N discharge to streams. The disproportionally smaller decrease in N discharge reflects the large mass of N in the aquifer coupled with long groundwater residence times.

Currently, there are two large wastewater spray irrigation facilities located in the study domain: the Mountaire Wastewater Treatment Facility and Inland Bays Wastewater Facility. The effects of wastewater application through spray irrigation were simulated with a two-step process. First, under different operations and soil conditions, evaporation and water flux, NO3- -N uptake by plants, and NO3- -N leaching were simulated using an unsaturated flow model, Hydrus-1D. Next, the range of simulated NO3- -N loads were input into the flow and transport model to study the impacts on groundwater elevation and NO3- -N conditions.

Over the long term, the spray irrigation of wastewater may increase water-table elevations up to 2.5m and impact large volumes of groundwater with NO3-. Reducing the concentration of NO3- in effluent and increasing the irrigation rate may reduce the volumes of water impacted by high concentrations of NO3-, but may facilitate the lateral and vertical migration of NO3-. Simulations indicate that NO3- will eventually impact deeper aquifers. An optimal practice of wastewater irrigation can be achieved by adjusting irrigation rate and effluent concentration. Further work is needed to determine these optimum application rates and concentrations.

OFR 50 - Delaware Geological Survey releases report on coastal sedimentary deposits

The Delaware Geological Survey has published an online report that presents a compilation of chronologic information for coastal sedimentary deposits of the U.S. Atlantic and Pacific coasts, with additional information for sites on the Pacific coast of South America.

This page tagged with:

Delaware Estuary Science and Environmental Summit, January 25-28, 2015 at Cape May, NJ

John A. Callahan and Thomas E. McKenna of Delaware Geological Survey (DGS) attended the Delaware Estuary Science and Environmental Summit, January 25-28, 2015 at Cape May, NJ, sponsored by the Partnership for the Delaware Estuary (PDE). Both gave talks and presented posters.

Sand search - Delaware Geological Survey assessing sand availability for beach restoration planning

The Delaware Geological Survey is helping determine where sand is available locally for future needs.

The Delaware Geological Survey (DGS) is identifying areas where sand is available to restore the state’s dunes and beaches following coastal storms through a new agreement with the Bureau of Ocean Energy Management (BOEM).

Housed at the University of Delaware’s College of Earth, Ocean, and Environment, DGS will evaluate the state’s existing geologic and geophysical data to pinpoint sand resources for future needs.

Regional partners to focus on sea-level rise in Delaware

A new partnership of scientists and federal officials from Delaware to Virginia will take a regional look at sea-level rise and how best to prepare for the impacts, including shoreline loss and increased flooding from storms.

BOEM and Delaware Sign Agreement to Identify Sand Resources for Coastal Resilience and Restoration Planning

As a part of President Obama’s continuing commitment to help coastal communities recover from Hurricane Sandy and promote resilient coastal systems, the Bureau of Ocean Energy Management (BOEM) and the State of Delaware signed a two-year cooperative agreement totaling $200,000 to identify sand resources for coastal resilience and restoration planning. The agreement will help BOEM and Delaware conduct research that will assist coastal communities recovering from Hurricane Sandy, restore habitat, increase our knowledge of sand resources offshore, and contribute to long-term coastal resilience planning efforts.

Under this agreement, the Delaware Geological Survey (DGS), located at the University of Delaware, will evaluate and consolidate Delaware’s existing geologic and geophysical data. The data will be used to identify new sand resources to meet future needs.

GM20 Geologic Map of the Millsboro and Whaleysville Quadrangles, Delaware

GM20 Geologic Map of the Millsboro and Whaleysville Quadrangles, Delaware

The geological history of the surficial units of the Millsboro Quadrangle and
Delaware portion of the Whaleysville Quadrangle was the result of deposition of the
Beaverdam Formation during the late Pliocene and its subsequent modification by
erosion and deposition related to sea-level fluctuations during the Pleistocene and late
Pleistocene upland swamp and bog deposition. The geology at the land surface was then
further modified by periglacial activity that produced dune deposits and Carolina Bays in
the map area. Surficial geologic mapping was conducted using field maps at a scale of
1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks
reflect detailed mapping using contours not shown on this map.

DGS Geologic Map No. 20 (Millsboro and Whaleysville Quadrangles) Dataset

DGS Geologic Map No. 20 (Millsboro and Whaleysville Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 20 (Millsboro and Whaleysville Quadrangles). The geological history of the surficial units of the Millsboro Quadrangle and Delaware portion of the Whaleysville Quadrangle was the result of deposition of the Beaverdam Formation during the late Pliocene and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene and late Pleistocene upland swamp and bog deposition. The geology at the land surface was then further modified by periglacial activity that produced dune deposits and Carolina Bays in the map area. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 20 (Millsboro and Whaleysville Quadrangles) exists for use in conjunction with this dataset.

GM19 Geologic Map of the Frankford and Selbyville Quadrangles, Delaware

GM19 Geologic Map of the Frankford and Selbyville Quadrangles, Delaware

The geological history of the surficial units of the Frankford and Delaware
portion of the Selbyville Quadrangles was the result of deposition of the Beaverdam
Formation during the late Pliocene and its subsequent modification by erosion and
deposition related to sea-level fluctuations during the Pleistocene. The geology at the
land surface was then further modified by periglacial activity that produced dune deposits
in the map area. Surficial geologic mapping was conducted using field maps at a scale of
1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks
reflect detailed mapping using contours not shown on this map.

DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

 DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles). The geological history of the surficial units of the Frankford and Delaware portion of the Selbyville Quadrangles is that of deposition of the Beaverdam Formation during the late Pliocene and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology at the land surface was then further modified by periglacial activity that produced dune deposits in the map area. Mapping was conducted using field maps at a scale of 1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping related to contours not shown on this map. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles) exists for use in conjunction with this dataset.

DGS Geologic Map No. 18 (Bethany Beach and Assawoman Bay Quadrangles, Delaware) Dataset

DGS Geologic Map No. 18 (Bethany Beach and Assawoman Bay Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 18 (Bethany Beach and Assawoman Bay Quadrangles). The geologic history of the surficial units of the Bethany Beach and Assawoman Bay Quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history onshore, in Indian River Bay and Assawoman Bay, and offshore in the Atlantic Ocean. Erosion during the late Pleistocene sea-level lowstand and ongoing deposition offshore and in Indian River Bay during the Holocene rise in sea level represents the latest of several cycles of erosion and deposition. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 18 (Bethany Beach and Assawoman Bay quadrangles) exists for use in conjunction with this dataset.

GM18 Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

The geologic history of the surficial units of the Bethany Beach and Assawoman Bay Quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history onshore, in Indian River Bay and Assawoman Bay, and offshore in the Atlantic Ocean. Erosion during the late Pleistocene sea-level lowstand and ongoing deposition offshore and in Indian River Bay during the Holocene rise in sea level represents the latest of several cycles of erosion and deposition.

Hurricane Sandy Q&A - Experts at UD aid state, National Weather Service during storm

4:37 p.m., Oct. 31, 2012--The Office of the State Climatologist and the Delaware Geological Survey (DGS), both based at the University of Delaware, provided the Delaware Emergency Management Agency (DEMA) and the National Weather Service with weather, coastal flooding and stream flooding information for Delaware during Hurricane Sandy.

Celebrating Earth Science - Delaware Geological Survey supplies educational materials to teachers for Earth Science Week

Delaware Geological Survey’s David Wunsch helps prepare for Earth Science Week by distributing educational kits at Coast Day on Oct. 7.

Delaware Geological Survey recently distributed Earth Science Week teacher kits at Coast Day.

Celebrate Geologic Map Day 2012!

DGS Geologic Map 16

Friday, October 19th has been designated Geologic Map Day 2012. As an extension of the National Cooperative Geologic Mapping Program of USGS, Geologic Map Day focuses the attention of students, teachers, and the general public on the study, uses, and significance of geologic maps for education, science, business, and a variety of public policy concerns.

Coast Day fun for kids - Families can enjoy fun activities about marine science at Coast Day in Lewes

Beach-loving kids can follow their fascination with the sea to Coast Day on Oct. 7 from 11 a.m. to 5 p.m. at the University of Delaware’s Hugh R. Sharp Campus in Lewes. The family-friendly event features fun activities that tap children’s natural curiosity about the ocean.

“This year’s theme is ‘Checking in on Our Coast,’” said event chair John Ewart of Delaware Sea Grant, which presents the event with UD’s College of Earth, Ocean, and Environment. “Kids can use their senses to explore marine science — and check out the tools our researchers use to do so, too.”

This page tagged with:

The Storm of '62

Kelvin Ramsey was quoted in the special section of Coastal Point, which featured the 50th anniversary of the Ash Wednesday 1962 nor'easter

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

The complex geologic history of the surficial units of the Harbeson Quadrangle is one of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.