Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "coastal geology"

Sand search - Delaware Geological Survey assessing sand availability for beach restoration planning

The Delaware Geological Survey is helping determine where sand is available locally for future needs.

The Delaware Geological Survey (DGS) is identifying areas where sand is available to restore the state’s dunes and beaches following coastal storms through a new agreement with the Bureau of Ocean Energy Management (BOEM).

Housed at the University of Delaware’s College of Earth, Ocean, and Environment, DGS will evaluate the state’s existing geologic and geophysical data to pinpoint sand resources for future needs.

Regional partners to focus on sea-level rise in Delaware

A new partnership of scientists and federal officials from Delaware to Virginia will take a regional look at sea-level rise and how best to prepare for the impacts, including shoreline loss and increased flooding from storms.

BOEM and Delaware Sign Agreement to Identify Sand Resources for Coastal Resilience and Restoration Planning

As a part of President Obama’s continuing commitment to help coastal communities recover from Hurricane Sandy and promote resilient coastal systems, the Bureau of Ocean Energy Management (BOEM) and the State of Delaware signed a two-year cooperative agreement totaling $200,000 to identify sand resources for coastal resilience and restoration planning. The agreement will help BOEM and Delaware conduct research that will assist coastal communities recovering from Hurricane Sandy, restore habitat, increase our knowledge of sand resources offshore, and contribute to long-term coastal resilience planning efforts.

Under this agreement, the Delaware Geological Survey (DGS), located at the University of Delaware, will evaluate and consolidate Delaware’s existing geologic and geophysical data. The data will be used to identify new sand resources to meet future needs.

GM20 Geologic Map of the Millsboro and Whaleysville Quadrangles, Delaware

GM20 Geologic Map of the Millsboro and Whaleysville Quadrangles, Delaware

The geological history of the surficial units of the Millsboro Quadrangle and
Delaware portion of the Whaleysville Quadrangle was the result of deposition of the
Beaverdam Formation during the late Pliocene and its subsequent modification by
erosion and deposition related to sea-level fluctuations during the Pleistocene and late
Pleistocene upland swamp and bog deposition. The geology at the land surface was then
further modified by periglacial activity that produced dune deposits and Carolina Bays in
the map area. Surficial geologic mapping was conducted using field maps at a scale of
1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks
reflect detailed mapping using contours not shown on this map.

DGS Geologic Map No. 20 (Millsboro and Whaleysville Quadrangles) Dataset

DGS Geologic Map No. 20 (Millsboro and Whaleysville Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 20 (Millsboro and Whaleysville Quadrangles). The geological history of the surficial units of the Millsboro Quadrangle and Delaware portion of the Whaleysville Quadrangle was the result of deposition of the Beaverdam Formation during the late Pliocene and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene and late Pleistocene upland swamp and bog deposition. The geology at the land surface was then further modified by periglacial activity that produced dune deposits and Carolina Bays in the map area. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 20 (Millsboro and Whaleysville Quadrangles) exists for use in conjunction with this dataset.

GM19 Geologic Map of the Frankford and Selbyville Quadrangles, Delaware

GM19 Geologic Map of the Frankford and Selbyville Quadrangles, Delaware

The geological history of the surficial units of the Frankford and Delaware
portion of the Selbyville Quadrangles was the result of deposition of the Beaverdam
Formation during the late Pliocene and its subsequent modification by erosion and
deposition related to sea-level fluctuations during the Pleistocene. The geology at the
land surface was then further modified by periglacial activity that produced dune deposits
in the map area. Surficial geologic mapping was conducted using field maps at a scale of
1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks
reflect detailed mapping using contours not shown on this map.

DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

 DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles). The geological history of the surficial units of the Frankford and Delaware portion of the Selbyville Quadrangles is that of deposition of the Beaverdam Formation during the late Pliocene and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology at the land surface was then further modified by periglacial activity that produced dune deposits in the map area. Mapping was conducted using field maps at a scale of 1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping related to contours not shown on this map. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles) exists for use in conjunction with this dataset.

DGS Geologic Map No. 18 (Bethany Beach and Assawoman Bay Quadrangles, Delaware) Dataset

DGS Geologic Map No. 18 (Bethany Beach and Assawoman Bay Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 18 (Bethany Beach and Assawoman Bay Quadrangles). The geologic history of the surficial units of the Bethany Beach and Assawoman Bay Quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history onshore, in Indian River Bay and Assawoman Bay, and offshore in the Atlantic Ocean. Erosion during the late Pleistocene sea-level lowstand and ongoing deposition offshore and in Indian River Bay during the Holocene rise in sea level represents the latest of several cycles of erosion and deposition. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 18 (Bethany Beach and Assawoman Bay quadrangles) exists for use in conjunction with this dataset.

GM18 Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

The geologic history of the surficial units of the Bethany Beach and Assawoman Bay Quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history onshore, in Indian River Bay and Assawoman Bay, and offshore in the Atlantic Ocean. Erosion during the late Pleistocene sea-level lowstand and ongoing deposition offshore and in Indian River Bay during the Holocene rise in sea level represents the latest of several cycles of erosion and deposition.

Hurricane Sandy Q&A - Experts at UD aid state, National Weather Service during storm

4:37 p.m., Oct. 31, 2012--The Office of the State Climatologist and the Delaware Geological Survey (DGS), both based at the University of Delaware, provided the Delaware Emergency Management Agency (DEMA) and the National Weather Service with weather, coastal flooding and stream flooding information for Delaware during Hurricane Sandy.

Celebrating Earth Science - Delaware Geological Survey supplies educational materials to teachers for Earth Science Week

Delaware Geological Survey’s David Wunsch helps prepare for Earth Science Week by distributing educational kits at Coast Day on Oct. 7.

Delaware Geological Survey recently distributed Earth Science Week teacher kits at Coast Day.

Celebrate Geologic Map Day 2012!

DGS Geologic Map 16

Friday, October 19th has been designated Geologic Map Day 2012. As an extension of the National Cooperative Geologic Mapping Program of USGS, Geologic Map Day focuses the attention of students, teachers, and the general public on the study, uses, and significance of geologic maps for education, science, business, and a variety of public policy concerns.

Coast Day fun for kids - Families can enjoy fun activities about marine science at Coast Day in Lewes

Beach-loving kids can follow their fascination with the sea to Coast Day on Oct. 7 from 11 a.m. to 5 p.m. at the University of Delaware’s Hugh R. Sharp Campus in Lewes. The family-friendly event features fun activities that tap children’s natural curiosity about the ocean.

“This year’s theme is ‘Checking in on Our Coast,’” said event chair John Ewart of Delaware Sea Grant, which presents the event with UD’s College of Earth, Ocean, and Environment. “Kids can use their senses to explore marine science — and check out the tools our researchers use to do so, too.”

This page tagged with:

The Storm of '62

Kelvin Ramsey was quoted in the special section of Coastal Point, which featured the 50th anniversary of the Ash Wednesday 1962 nor'easter

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

The complex geologic history of the surficial units of the Harbeson Quadrangle is one of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 16 (Fairmount and Rehoboth Beach quadrangles). The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

To facilitate the GIS community of Delaware and to release the geologic map of the Fairmount and Rehoboth Beach quadrangles with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 16. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

DGS releases new geologic map of Rehoboth Beach area

The Delaware Geological Survey (DGS) has published a new geologic map of the Rehoboth Beach area in eastern Sussex County entitled Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware. Geologic Map 16 presents the results of research by Kelvin W. Ramsey of the DGS.

GM16 Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware

GM16 Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware

The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

Temporal Imaging of the Intertidal Critical Zone

Time series of thermal images showing increasing temperature (yellow, orange, and red) as warm tidal water flows over a saltmarsh near Bowers Beach, Delaware during a summer evening (June 2009).
Project Contact(s):

We are developing an innovative ground-based imaging system to collect multi-spectral imagery (visible, near and thermal infrared bands) at time-scales (minutes/hours) below those of the dominant processes in intertidal environments (semi-diurnal tides, day/night). A modular system based on mature imaging technology is being assembled for science missions by foot, boat, truck, tower, and lift. This project consists of some critical laboratory studies to test our conceptual framework.

RI76 Stratigraphy, Correlation, and Depositional Environments of the Middle to Late Pleistocene Interglacial Deposits of Southern Delaware

RI76 Stratigraphy, Correlation, and Depositional Environments of the Middle to Late Pleistocene Interglacial Deposits of Southern Delaware

Rising and highstands of sea level during the middle to late Pleistocene deposited swamp to nearshore sediments along the margins of an ancestral Delaware Bay, Atlantic coastline, and tributaries to an ancestral Chesapeake Bay. These deposits are divided into three lithostratigraphic groups: the Delaware Bay Group, the Assawoman Bay Group (named herein), and the Nanticoke River Group (named herein). The Delaware Bay Group, mapped along the margins of Delaware Bay, is subdivided into the Lynch Heights Formation and the Scotts Corners Formation. The Assawoman Bay Group, recognized inland of Delaware’s Atlantic Coast, is subdivided into the Omar Formation, the Ironshire Formation, and the Sinepuxent Formation. The Nanticoke River Group, found along the margins of the Nanticoke River and its tributaries, is subdivided into the Turtle Branch Formation (named herein) and the Kent Island Formation.

Delaware Bay Group deposits consist of bay-margin coarse sand and gravel that fine upward to silt and silty sand. Beds of organic-rich mud were deposited in tidal marshes. Near the present Atlantic Coast, the Delaware Bay Group includes organic-rich muds and shelly muds deposited in lagoonal environments.

Assawoman Bay Group deposits range from very fine, silty sands to silty clays with shells deposited in back-barrier lagoons, to fine to coarse, well-sorted sands deposited in barriers and spits.

Nanticoke River Group deposits consist of coarse sand and gravel that fine upward to silty clays. Oyster shells are found associated with the clays in the Turtle Branch Formation. Organic-rich clayey silts were deposited in swamps and estuaries. Well-sorted fine sands to gravelly sands were deposited on beaches and tidal flats on the flanks of the ancestral Nanticoke River and its tributaries.

The Lynch Heights, Omar, and Turtle Branch Formations are age-equivalent units associated with highstands of sea level,which occurred at approximately 400,000 and 325,000 yrs B.P. (MIS 11 and 9, respectively). The Scotts Corners, Ironshire, Sinepuxent, and Kent Island Formations are age-equivalent units associated with highstands of sea level, which occurred between 120,000 and 80,000 yrs B.P. (MIS 5e and 5a, respectively).