Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "arc affinity"

Geochemical Data of Mafic Rocks in Delaware Piedmont, PA and MD

Geochemical Data of Mafic Rocks in Delaware Piedmont, PA and MD

Geochemical data from Ordovician and Silurian mafic rocks in the Wilmington Complex in Delaware, the James Run Formation in Cecil County, Maryland, and the Wissahickon Formation in Delaware and Pennsylvania were collected in conjunction with preparation of a new geologic map of the Delaware-Pennsylvania Piedmont. Although concentrations of most elements may have been disrupted by metamorphism, the more stable high field strength elements, including the rare earth elements (REE), are consistent within mapped lithodemic units and are compared to modern basaltic magmas from relatively well known tectonomagmatic environments.

Our results are similar to those for other Appalachian mafic rocks and suggest a suprasubduction zone tectonic setting for the Wilmington Complex and the James Run Formation in Cecil County, Maryland. Thus, the rocks of the Wilmington Complex plus the James Run Formation in Cecil County may be stages in a continuum that records the temporal magmatic evolution of an arc complex.

RI60 Geochemistry of the Mafic Rocks, Delaware Piedmont and Adjacent Pennsylvania and Maryland: Confirmation of Arc Affinity

RI60 Geochemistry of the Mafic Rocks, Delaware Piedmont and Adjacent Pennsylvania and Maryland: Confirmation of Arc Affinity

Geochemical data from Ordovician and Silurian mafic rocks in the Wilmington Complex in Delaware, the James Run Formation in Cecil County, Maryland, and the Wissahickon Formation in Delaware and Pennsylvania were collected in conjunction with preparation of a new geologic map of the Delaware-Pennsylvania Piedmont. Although concentrations of most elements may have been disrupted by metamorphism, the more stable high field strength elements, including the rare earth elements (REE), are consistent within mapped lithodemic units and are compared to modern basaltic magmas from relatively well known tectonomagmatic environments.

Exploring the Wilmington Blue Rocks: A GeoAdventure in the Delaware Piedmont

Blue Rocks at Greenway

The Wilmington blue rock, Delaware's most famous rock, underlies both the city of Wilmington and the rolling upland north and east of the city. It is best exposed along the banks of the Brandywine Creek from south of Rockland to the Market Street Bridge. Along this section the Brandywine has carved a deep gorge in the blue rock. The water fall along this four mile gorge is approximately 120', and in the 17th and 18th centuries provided water power for one of the greatest industrial developments in the American colonies. The field trip stops described below are chosen as good examples of blue rock along the Brandywine Creek, and to illustrate how the geology has influenced the development of this area. It is not necessary to visit every stop to become familiar with the blue rocks, you may choose to visit only a few.

What are GeoAdventures?

The Wilmington Western Railroad follows the Red Clay Valley through the Delaware Piedmont cutting through many of the Piedmont rock units.

GeoAdventures are designed to allow the reader to learn about a particular geologic point of interest in Delaware’s Piedmont province and then take a short field trip to that area. Want to know more about the Wilmington blue rock or Brandywine blue granite? Take the Wilmington Blue Rock GeoAdventure and go see just what the blue rock looks like.