Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "aquifer"

Data and Graphs of Water Level Summaries for Wells with 20+ Years or 100+ Observations

Example Hydrograph for DB24-18 - Water Level Summaries for Wells with 20+ Years or 100+ Observations

Ground-water levels are basic information needed for evaluating water conditions and for basic and applied research. For these efforts, water levels are being measured statewide in wells completed in multiple aquifers. Some wells are measured for specific projects, such as the Coastal Aquifers Salinity Project and the Water Conditions program, while other wells are measured so that staff can maintain long term records of ground-water levels for evaluation of trends. Table contains summary data from wells having 100 or more water level observations.

RI78 Subsurface Geology of the Area Between Wrangle Hill and Delaware City, Delaware

RI78 Subsurface Geology of the Area Between Wrangle Hill and Delaware City, Delaware

The geology and hydrology of the area between Wrangle Hill and Delaware City, Delaware, have been the focus of numerous studies since the 1950s because of the importance of the local groundwater supply and the potential environmental impact of industrial activity. In this report, 490 boreholes from six decades of drilling provide dense coverage, allowing detailed characterization of the subsurface geologic framework that controls groundwater occurrence and flow.

The region contains a lower section of tabular Cretaceous strata (Potomac, Merchantville, Englishtown, Marshalltown,and Mount Laurel Formations in ascending order) and a more stratigraphically complex upper section of Pleistocene-to-modern units (Columbia, Lynch Heights, and Scotts Corners Formations, latest Pleistocene and Holocene surficial sediments and estuarine deposits). The lowermost Potomac Formation is a mosaic of alluvial facies and includes fluvial channel sands that function as confined aquifer beds; however, the distribution of aquifer-quality sand within the formation is extremely heterogeneous. The Merchantville Formation serves as the most significant confining layer. The Columbia Formation is predominantly sand and functions as an unconfined aquifer over much of the study area.

To delineate the distribution and character of the subsurface formations, densely spaced structural-stratigraphic cross sections were constructed and structural contour maps were created for the top of the Potomac Formation and base of the Columbia Formation. The Cretaceous formations form a series of relatively parallel strata that dip gently (0.4 degrees) to the southeast. These formations are progressively truncated to the north by more flatly dipping Quaternary sediments, except in a narrow north-south oriented belt on the east side of the study area where the deeply incised Reybold paleochannel eroded into the Potomac Formation.

The Reybold paleochannel is one of the most significant geological features in the study area. It is a relatively narrow sandfilled trough defined by deep incision at the base of the Columbia Formation. It reaches depths of more than 110 ft below sea level with a width as narrow as 1,500 ft. It is interpreted to be the result of scour by the sudden release of powerful floodwaters from the north associated with one or more Pleistocene deglaciations. Where the Reybold paleochannel cuts through the Merchantville confining layer, a potential pathway exists for hydrological communication between Columbia and Potomac aquifer sands.

East of the paleochannel, multiple cut-and-fill units within the Pleistocene to Holocene section create a complex geologic framework. The Lynch Heights and Scotts Corners Formations were deposited along the paleo-Delaware River in the late Pleistocene and are commonly eroded into the older Pleistocene Columbia Formation. They are associated with scarps and terraces that represent several generations of sea-level-driven Pleistocene cut-and-fill. They, in turn, have been locally eroded and covered by Holocene marsh and swamp deposits. The Lynch Heights and Scotts Corners Formations include sands that are unconfined aquifers but complicated geometries and short-distance facies changes make their configuration more complex than that of the Columbia Formation.

Presentation on RIBS at Fall 2012 AGU meeting

A poster "Modeling Engineered Approaches to Enhance Denitrification under Rapid Infiltration Basins" resulting from a collaborative research project between Paul Imhoff, Maryam Akhavan (UD Civil&Environmental Engineering), A. Scott Andres (DGS), and Stefan Finsterle (Lawrence Berkley National Lab) was presented at the Fall 2012 AGU meeting in San Francisco, CA on Dec. 3.

Finding faults - Delaware Geological Survey discovers evidence of past earthquakes

Delaware Geological Survey scientists found slickensides in core samples indicating faults in northern Delaware.

Delaware Geological Survey (DGS) scientists have uncovered hard proof of faults in northern Delaware, indicating the occurrence of earthquakes millions of years ago.

DGS releases new DGIR web application

Delaware Geologic Information Resource (DGIR) Web Application

The Delaware Geological Survey has released the Delaware Geologic Information Resource (DGIR), an online data display tool and map viewer for geologic and hydrologic information, as a "beta" site. DGIR was designed to provide the Delaware professional community with a variety of geoscience data in one application. DGS will continue to refine the both the data and functionality of the website as it is reviewed.

Monitoring our water - Delaware Geological Survey improving groundwater monitoring efforts with new wells, sampling

Scott Andres examines sediment samples extracted from more than 500 feet underground for clues about the amount and quality of water available in central Delaware.

Delaware Geological Survey improving groundwater monitoring efforts with new wells, sampling. Scientists are digging for answers about the amount and quality of water available underground in central Delaware, where ongoing development will put increasing demands on water supplies in the coming decade.

The Delaware Geological Survey (DGS) is installing 7,700 feet of wells at eight sites in southern New Castle and northern Kent counties to improve groundwater-monitoring efforts, supported by a $600,000 grant from the Delaware Department of Natural Resources and Environmental Control (DNREC). Groundwater is the primary source of drinking water south of the Chesapeake and Delaware Canal, and populations there are projected to continue expanding.

Effect of tropical storms Irene and Lee on groundwater levels in well Qb35-08 near Laurel, Delaware

Rapid, significant groundwater recharge occurred in response to tropical storms Irene and Lee.a

Effect of tropical storms Irene and Lee on groundwater levels in well Qb35-08

Plot of groundwater levels, groundwater temperature, and rainfall near Laurel, Delaware

Tropical storms Irene and Lee caused a 9-1/2 foot rise of the water table in western Sussex County near Laurel. Groundwater levels and temperatures in Qb35-08 were collected with an automated pressure-temperature datalogger system. At the same time, rainfall and soil moisture data were recorded by the DEOS Laurel Airport station located approximately 5 miles from the well.

Study takes look at region's water - Growth areas' quantity, quality is focus

Scientists will sink more than 1.4 miles of wells into northern Kent County and southern New Castle County aquifers in the coming year, hoping to pump out a flood of new information about groundwater quantity and quality in current and future growth areas.

Delaware Groundwater Monitoring Network

The Delaware Geological Survey (DGS) currently monitors groundwater levels in a network of 68 wells in Delaware. Long time-series of water levels in major aquifers serve as critical baseline data for resource management and analyses of aquifer response to pumping, climatic variability, drought hazards, seawater intrusion, and interaction with streams and their ecosystems.

Peter P. McLaughlin Jr. presented at 2011 AAPG annual meeting

Peter P. McLaughlin Jr., of the Delaware Geological Survey, presented "Stratigraphic Architecture of Shallow-Marine Siliciclastic Sequences in an Updip Passive-Margin Setting: Insights into the Miocene Aquifers of the Central Delmarva Peninsula," at the 2011 annual meeting of the American Association of Petroleum Geologists and Society for Sedimentary Geology, April 12, Houston. The presentation was coauthored with graduate student Paul Martin (geological sciences) and with Kenneth G. Miller and James V. Browning (Rutgers University).

DGS releases new geologic map of Rehoboth Beach area

The Delaware Geological Survey (DGS) has published a new geologic map of the Rehoboth Beach area in eastern Sussex County entitled Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Delaware. Geologic Map 16 presents the results of research by Kelvin W. Ramsey of the DGS.

RI77 Simulation of Groundwater Flow in Southern New Castle County, Delaware

RI77 Simulation of Groundwater Flow in Southern New Castle County, DelawareRI77 Simulation of Groundwater Flow in Southern New Castle County, Delaware

To understand the effects of projected increased demands on groundwater for water supply, a finite-difference, steady-state, groundwater flow model was used to simulate groundwater flow in the Coastal Plain sediments of southern New Castle County, Delaware. The model simulated flow in the Columbia (water table), Rancocas, Mt. Laurel, combined Magothy/Potomac A, Potomac B, and Potomac C aquifers, and intervening confining beds. Although the model domain extended north of the Chesapeake and Delaware Canal, south into northern Kent County, east into New Jersey, and west into Maryland, the model focused on the area between the Chesapeake and Delaware Canal, the Delaware River, and the Maryland-Delaware border. Boundary conditions for these areas were derived from modeling studies completed by others over the past 10 years.

Compilation and review of data used for model input revealed gaps in hydraulic properties, pumping, aquifer and confining bed geometry, and water-level data. The model is a useful tool for understanding hydrologic processes within the study area such as horizontal and vertical flow directions and response of aquifers to pumping, but significant data gaps preclude its use for detailed analysis for water resources management including estimating flow rates between Delaware and adjacent states. The calibrated model successfully simulated groundwater flow directions in the Rancocas and Mt. Laurel aquifers as expected from the conceptual model. Flow patterns in the Rancocas and Mt. Laurel aquifers are towards local streams, similar to flow directions in the Columbia (water table) aquifer in locations where these aquifers are in close hydraulic connection.

Water-budget calculations and simulated heads indicate that deep confined aquifers (Magothy and Potomac aquifers) receive groundwater recharge from shallow aquifers (Columbia, Rancocas, and Mt. Laurel aquifers) in most of the study domain. Within shallow aquifers, groundwater moves toward major streams, while in the deep aquifers, groundwater moves
toward major pumping centers.

DNREC raises capital request - Sixfold hike includes beach, water projects

More money would go to projects that make Delaware cleaner, greener and safer under a mostly no-growth budget outlined Monday by the Department of Natural Resources and Environmental Control. Agency Secretary Collin P. O'Mara asked the Office of Management and Budget for about $35.2 million in general funds for the fiscal year that begins July 1, with health care costs accounting for most of the nearly $2 million increase from the current year.

Andres presented at the Delaware Rural Water Association and Delaware Clean Water Advisory Council

A. Scott Andres, Delaware Geological Survey, presented “Agricultural Water Use in Delaware” and “Rapid Infiltration Basin Systems Research Introduction” at the Delaware Rural Water Association and Delaware Clean Water Advisory Council, Nov. 18, Milford, Del.

This page tagged with:

Digital Water-Table Data for New Castle County, Delaware (Digial Data Product No. 05-04)

Digital Water-Table Data for New Castle County, Delaware

This digital product contains gridded estimates of water-table (wt) elevation and depth to water (dtw) under dry, normal, and wet conditions for New Castle County, Delaware excluding the Piedmont. Files containing the point data used to create the grids are also included. This work is the final component of a larger effort to provide estimates of water-table elevations and depths to water for the Coastal Plain portion of Delaware. Mapping was supported by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

These grids were produced with the same multiple linear regression (MLR) method as Andres and Martin (2005). Briefly, this method consists of: identifying dry, normal, and wet periods from long-term observation well data (Db24-01, Hb14-01); estimating a minimum water table (Sepulveda, 2002) by fitting a localized polynomial surface to elevations of surface water features (e.g., streams, swamps, and marshes); and, computing a second variable in the regression from water levels observed in wells. Separate MLR equations were determined for dry, normal, and wet periods and these equations were used in ArcMap v.9 (ESRI, 2004) to estimate grids of water-table elevations and depths to water. New Castle County was divided into a northern section and a southern section with the C&D Canal being the natural line of demarcation. A minimum water-table surface was then calculated for both the northern and southern sections of New Castle County. However, dividing the county, as well as the water-level data, into two sections did not result in sufficient regression coefficients for use in the estimation process. Therefore, the data (minimum water-table surface and water-level data) were merged together and the water-table elevation and depth to water grids for dry, normal, and wet conditions were then calculated for the county as a whole.