Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Setters Formation"

Outcrop Ba14-a: The Setters Formation at Avondale Quarry

Rock Outcrop Ba14-a: The Setters Formation at Avondale Quarry

The Setters Formation is located in southeast Avondale, PA. Huge slabs of rock have been exposed by a gravel company that has been removing the hillside quarrying for quartzite to sell as building stone and grinding pelitic rock into gravel and stone. These slabs have a foliation with a strike of 45 degrees East of North and a southeastern dip off of the Avondale Anticline. They also display quartzite, schist, and pods of pegmatite, containing large garnets (1-2 in. diameter) and schorl tourmaline, that appear to be “sweated out of schist.” A dramatic contrast in rich type-shelf facies reflects beach sand and bogs or inlets.

Setters Formation

Osq

In Delaware, predominantly an impure quartzite and garnet-sillimanite-biotite-microcline schist. Major minerals include microcline, quartz, and biotite with minor plagioclase, and garnet. Muscovite and sillimanite vary with metamorphic grade. Accessory minerals are iron-titanium oxides, zircon, sphene, and apatite. Microcline is an essential constituent of the quartzites and schists and serves to distinguish the Setters rocks from the plagioclase-rich schists and gneisses of the Wissahickon Formation.

RI56 The Setters Formation in the Pleasant Hill Valley, Delaware: Metamorphism and Structure

RI56 The Setters Formation in the Pleasant Hill Valley, Delaware: Metamorphism and Structure

The Setters Formation, identified on the southeast side of Pleasant Hill valley in well Cb13-16, contains the prograde mineral assemblages (1) microcline, biotite, and sillimanite +/- garnet, and (2) microcline, biotite, sillimanite, and muscovite +/- garnet. These pelitic assemblages allow us to infer peak metamorphic conditions between 620° and 680°C and 4 to 6 kilobars pressure, if PH20/Pfluid is > 0.5. There is some evidence in the drill cuttings to indicate that partial melting accompanied the formation of sillimanite, thus constraining peak temperature to > 640°C.

Piedmont Rock Units

The Piedmont occurs in the hilly northernmost part of the state and is composed of crystalline metamorphic and igneous rocks. This chart summarizes the age and distribution of the geologic units that are recognized in the Delaware Piedmont by the Delaware Geological Survey.

What are GeoAdventures?

The Wilmington Western Railroad follows the Red Clay Valley through the Delaware Piedmont cutting through many of the Piedmont rock units.

GeoAdventures are designed to allow the reader to learn about a particular geologic point of interest in Delaware’s Piedmont province and then take a short field trip to that area. Want to know more about the Wilmington blue rock or Brandywine blue granite? Take the Wilmington Blue Rock GeoAdventure and go see just what the blue rock looks like.

Overview of the Piedmont

The Piedmont is defined by hard crystalline rocks north of the fall zone.

The Appalachian Piedmont and Atlantic Coastal Plain are physiographic provinces that are separated by the fall zone. The fall zone (also called the Fall Line) is the contact where the hard crystalline rocks of the Piedmont dip under and disappear beneath the sediments of the Coastal Plain. The landscape and rock types shown in northern Delaware are classical examples of the larger geologic features that dominate the geology of eastern North America.

GM13 Geologic Map of New Castle County, Delaware

GM13 Geologic Map of New Castle County, Delaware

This map shows the surficial geology of New Castle County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water. Geologic maps are also used to identify geologic hazards, such as sinkholes and flood-prone areas, to identify sand and gravel resources, and for supporting state, county, and local land-use and planning decisions.

Map Scale: 
100,000
This page tagged with: