Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Potomac Formation"

RI78 Subsurface Geology of the Area Between Wrangle Hill and Delaware City, Delaware

RI78 Subsurface Geology of the Area Between Wrangle Hill and Delaware City, Delaware

The geology and hydrology of the area between Wrangle Hill and Delaware City, Delaware, have been the focus of numerous studies since the 1950s because of the importance of the local groundwater supply and the potential environmental impact of industrial activity. In this report, 490 boreholes from six decades of drilling provide dense coverage, allowing detailed characterization of the subsurface geologic framework that controls groundwater occurrence and flow.

The region contains a lower section of tabular Cretaceous strata (Potomac, Merchantville, Englishtown, Marshalltown,and Mount Laurel Formations in ascending order) and a more stratigraphically complex upper section of Pleistocene-to-modern units (Columbia, Lynch Heights, and Scotts Corners Formations, latest Pleistocene and Holocene surficial sediments and estuarine deposits). The lowermost Potomac Formation is a mosaic of alluvial facies and includes fluvial channel sands that function as confined aquifer beds; however, the distribution of aquifer-quality sand within the formation is extremely heterogeneous. The Merchantville Formation serves as the most significant confining layer. The Columbia Formation is predominantly sand and functions as an unconfined aquifer over much of the study area.

To delineate the distribution and character of the subsurface formations, densely spaced structural-stratigraphic cross sections were constructed and structural contour maps were created for the top of the Potomac Formation and base of the Columbia Formation. The Cretaceous formations form a series of relatively parallel strata that dip gently (0.4 degrees) to the southeast. These formations are progressively truncated to the north by more flatly dipping Quaternary sediments, except in a narrow north-south oriented belt on the east side of the study area where the deeply incised Reybold paleochannel eroded into the Potomac Formation.

The Reybold paleochannel is one of the most significant geological features in the study area. It is a relatively narrow sandfilled trough defined by deep incision at the base of the Columbia Formation. It reaches depths of more than 110 ft below sea level with a width as narrow as 1,500 ft. It is interpreted to be the result of scour by the sudden release of powerful floodwaters from the north associated with one or more Pleistocene deglaciations. Where the Reybold paleochannel cuts through the Merchantville confining layer, a potential pathway exists for hydrological communication between Columbia and Potomac aquifer sands.

East of the paleochannel, multiple cut-and-fill units within the Pleistocene to Holocene section create a complex geologic framework. The Lynch Heights and Scotts Corners Formations were deposited along the paleo-Delaware River in the late Pleistocene and are commonly eroded into the older Pleistocene Columbia Formation. They are associated with scarps and terraces that represent several generations of sea-level-driven Pleistocene cut-and-fill. They, in turn, have been locally eroded and covered by Holocene marsh and swamp deposits. The Lynch Heights and Scotts Corners Formations include sands that are unconfined aquifers but complicated geometries and short-distance facies changes make their configuration more complex than that of the Columbia Formation.

Presentations at GSA (Geological Society of America) 2012 Annual Meeting

David Wunsch, director of the Delaware Geological Survey and state geologist, and Peter McLaughlin, senior scientist with the Delaware Geological Survey, attended the annual meeting of Geological Society of America in Charlotte, N.C., Nov. 4-7.

Study takes look at region's water - Growth areas' quantity, quality is focus

Scientists will sink more than 1.4 miles of wells into northern Kent County and southern New Castle County aquifers in the coming year, hoping to pump out a flood of new information about groundwater quantity and quality in current and future growth areas.

DGS issues report on groundwater modeling in southern New Castle County

The Delaware Geological Survey (DGS) released a new technical report entitled Simulation of Groundwater Flow in Southern New Castle County, Delaware, which was prepared by Changming He and A. Scott Andres of the DGS.

DGS Report of Investigations No. 77 is a preliminary step in developing a detailed understanding of the subsurface hydrology and evaluating groundwater availability in major aquifer systems beneath southern New Castle County and parts of northern Kent County, which are expected to have greater demands for groundwater in the next 20 years due to population growth.

B9 Stratigraphy of the Sedimentary Rocks of Delaware

B9 Stratigraphy of the Sedimentary Rocks of Delaware

The stratigraphy of the Coastal Plain of Delaware is discussed with emphasis placed upon an appraisal of the stratigraphic nomenclature. A revised stratigraphic column for Delaware is proposed. Rock stratigraphic units, based mainly on data from certain key wells, are described and the published names which have been or which might conceivably be applied to those units are reviewed. In each case a name is chosen and the reasons for the choice are stated. The relationships between the column established for Delaware and the recognized columns for adjacent states are considered. The rock units of the Coastal Plain of New Jersey, Delaware, and Maryland form an interrelated mass. However, profound facies changes do occur, particularly in the dip direction, but also along the strike. Thus, attempts to extend units established in the outcrop belt almost indefinitely into the subsurface have been unsatisfactory.

Potomac Formation

Kpt

Dark-red, gray, pink, and white silty clay to clayey silt and very fine to medium sand beds. Beds of gray clayey silt to very fine sand that contain pieces of charcoal and lignite are common. Deposited in a fluvial setting in a tropical to subtropical environment as indicated by abundant paleosol horizons. Ranges from 20 ft updip to over 1600 ft thick in southern New Castle County.

RI71 Internal Stratigraphic Correlation of the Subsurface Potomac Formation, New Castle County, Delaware, and Adjacent Areas in Maryland and New Jersey

RI71 Internal Stratigraphic Correlation of the Subsurface Potomac Formation, New Castle County, Delaware, and Adjacent Areas in Maryland and New Jersey

This report presents a new time-stratigraphic framework for the subsurface Potomac Formation of New Castle County, Delaware, part of adjacent Cecil County, Maryland, and nearby tie-in boreholes in New Jersey. The framework is based on a geophysical well-log correlation datum that approximates the contact between Upper and Lower Cretaceous sediments. This datum is constrained by age determinations based on published and unpublished results of studies of fossil pollen and spores in samples of sediment cores from boreholes in the study area. Geophysical log correlation lines established above and below the datum approximate additional chronostratigraphic surfaces. The time-stratigraphic units thus defined are not correlated parallel to the basement unconformity, as in previous practice, but instead onlap it in an updip direction. In future studies, the sedimentary facies of the Potomac Formation within each time-stratigraphic layer may be mapped and analyzed as genetically related contemporaneous units. This new stratigraphic framework will allow better delineation of the degree of lateral connection between potential aquifer sands, thus enhancing understanding of aquifer architecture.

SP4 Generalized Geologic Map of Delaware

SP4 Generalized Geologic Map of Delaware

The Generalized Geologic Map of Delaware is a brief summary for general use indicating the major types and locations of rocks present throughout the State, and their interrelationships. The map is preliminary as it is a first step in a continuing program of detailed geologic mapping. It is based upon many existing sources of data; additional detail may be found in the references listed.

OFR21 A Guide to Fossil Sharks, Skates, and Rays from the Chesapeake and Delaware Canal Area, Delaware

OFR21 A Guide to Fossil Sharks, Skates, and Rays from the Chesapeake and Delaware Canal Area, Delaware

In recent years there has been a renewed interest by both amateur and professional paleontologists in the rich upper Cretaceous exposures along the Chesapeake and Delaware Canal, Delaware (Fig. 1). Large quantities of fossil material, mostly clams, oysters, and snails have been collected as a result of this activity. Recent dredging (1978, 1981) by the United States Army Corps of Engineers has helped expose a rich vertebrate fossil assemblage. It includes representatives from the classes Reptilia, Osteichthyes, and Chondrichthyes. An extensive literature search has revealed that a wealth of information exists which would aid in the identification of the vertebrate fossils of Delaware.

RI37 Stratigraphic Nomenclature of Nonmarine Cretaceous Rocks of Inner Margin of Coastal Plain in Delaware and Adjacent States

RI37 Stratigraphic Nomenclature of Nonmarine Cretaceous Rocks of Inner Margin of Coastal Plain in Delaware and Adjacent States

Rocks of Cretaceous age deposited in continental and marginal environments, and now found along the inner edge of the northern Atlantic Coastal Plain, have historically been classified as the Potomac Group and the Potomac, Patuxent, Arundel, Patapsco, Raritan, and Magothy formations. Subdivisions of the Raritan and Magothy formations have also been recognized. Lithologic characteristics and spatial relationships of the units indicate that only the Potomac Formation and the Magothy Formation can be differentiated in northern Delaware. The complex nonmarine deposits originated on an aggrading coastal plain. Their projections into the deeper subsurface on- and offshore will be important in future studies. No changes in terminology are recommended, but careful use of stratigraphic nomenclature is urged in order to avoid confusion, especially in hydrologic applications.

B20 Stratigraphy of the Post-Potomac Cretaceous-Tertiary Rocks of Central Delaware

B20 Stratigraphy of the Post-Potomac Cretaceous-Tertiary Rocks of Central Delaware

This Bulletin presents the subsurface stratigraphy of the post-Potomac Cretaceous and Tertiary rocks of the Atlantic Coastal Plain of central Delaware, between the Chesapeake and Delaware (C & D) Canal and Dover. Geophysical log correlations supported by biostratigraphic and lithologic data from boreholes in Delaware and nearby New Jersey provide the basis for the report. The stratigraphic framework presented here is important for identifying subsurface stratigraphic units penetrated by the numerous boreholes in this part of Delaware, particularly those rock units that serve as aquifers, because such knowledge allows for better prediction at ground-water movement and availability. Also, accurate stratigraphy is a prerequisite for interpreting the geologic history of the rocks and for the construction of maps that depict the structure and thickness of each unit.

Coastal Plain Rock Units (Stratigraphic Chart)

The geology of Delaware includes parts of two geologic provinces: the Appalachian Piedmont Province and the Atlantic Coastal Plain Province. The Piedmont occurs in the hilly northernmost part of the state and is composed of crystalline metamorphic and igneous rocks. This chart summarizes the age and distribution of the geologic units that are recognized in the state by the Delaware Geological Survey.

HM3 Geohydrology of the Wilmington Area, Delaware

Geohydrology of the Wilmington Area, Delaware

Geology and hydrology of the Wilmington, Delaware area. There are 4 sheets in this series.

HM2 Geohydrology of the Newark Area, Delaware

Geohydrology of the Newark Area, Delaware

Geology and Hydrology of the Newark, Delaware area. There are 2 sheets in this series.

GM13 Geologic Map of New Castle County, Delaware

GM13 Geologic Map of New Castle County, Delaware

This map shows the surficial geology of New Castle County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water. Geologic maps are also used to identify geologic hazards, such as sinkholes and flood-prone areas, to identify sand and gravel resources, and for supporting state, county, and local land-use and planning decisions.

This page tagged with: