Share

DGS Annual Report

DGS Annual Report of Programs and Activities.

Click here to download!

Site content related to keyword: "Milford aquifer"

Delaware Geological Survey issues report on groundwater modeling in eastern Sussex County

The Delaware Geological Survey (DGS) has released a new technical report titled Simulation of Groundwater Flow and Contaminant Transport in Eastern Sussex County, Delaware with Emphasis on Impacts of Spray Irrigation of Treated Wastewater, which was prepared by Changming He and A. Scott Andres of DGS.

DGS Report of Investigations No. 79 documents development of a detailed study of subsurface hydrogeology, interactions between aquifers and streams, and the effects of spray irrigation of treated wastewater on groundwater beneath southern eastern Sussex County.

RI79 Simulation of Groundwater Flow and Contaminant Transport in Eastern Sussex County, Delaware With Emphasis on Impacts of Spray Irrigation of Treated Wastewater

Simulation of Groundwater Flow and Contaminant Transport in Eastern Sussex County, Delaware With Emphasis on Impacts of Spray Irrigation of Treated Wastewater

This report presents a conceptual model of groundwater flow and the effects of nitrate (NO3-) loading and transport on shallow groundwater quality in a portion of the Indian River watershed, eastern Sussex County, Delaware. Three-dimensional, numerical simulations of groundwater flow, particle tracking, and contaminant transport were constructed and tested against data collected in previous hydrogeological and water-quality studies.

The simulations show a bimodal distribution of groundwater residence time in the study area, with the largest grouping at less than 10 years, the second largest grouping at more than 100 years, and a median of approximately 29 years.

Historically, the principal source of nitrate to the shallow groundwater in the study area has been from the chemical- and manure-based fertilizers used in agriculture. A total mass of NO3- -nitrogen (N) of about 169 kg/day is currently simulated to discharge to surface water. As the result of improved N-management practices, after 45 years a 20 percent decrease in the mass of NO3- -N reaching the water table would result in an approximately 4 percent decrease in the mass of simulated N discharge to streams. The disproportionally smaller decrease in N discharge reflects the large mass of N in the aquifer coupled with long groundwater residence times.

Currently, there are two large wastewater spray irrigation facilities located in the study domain: the Mountaire Wastewater Treatment Facility and Inland Bays Wastewater Facility. The effects of wastewater application through spray irrigation were simulated with a two-step process. First, under different operations and soil conditions, evaporation and water flux, NO3- -N uptake by plants, and NO3- -N leaching were simulated using an unsaturated flow model, Hydrus-1D. Next, the range of simulated NO3- -N loads were input into the flow and transport model to study the impacts on groundwater elevation and NO3- -N conditions.

Over the long term, the spray irrigation of wastewater may increase water-table elevations up to 2.5m and impact large volumes of groundwater with NO3-. Reducing the concentration of NO3- in effluent and increasing the irrigation rate may reduce the volumes of water impacted by high concentrations of NO3-, but may facilitate the lateral and vertical migration of NO3-. Simulations indicate that NO3- will eventually impact deeper aquifers. An optimal practice of wastewater irrigation can be achieved by adjusting irrigation rate and effluent concentration. Further work is needed to determine these optimum application rates and concentrations.

Delaware Geologic Information Resource (DGIR) Map Viewer

DGIR Map Viewer Screenshot
Project Contact(s):

The Delaware Geologic Information Resource (DGIR) is an online data display tool and map viewer for a variety of geologic and hydrologic information released by the Delaware Geological Survey. It was designed to deliver the most commonly available and requested geologic and hydrologic information that is appropriate for use in hydrologic studies, required by regulation and ordinance, and to support state resource management decisions.

Web-Delivered Application for Hydrogeologic Data

Project Contact(s):

This project is designed to deliver, by web-based technologies, the most commonly available and requested geologic and hydrologic information used in hydrologic studies required by regulation and ordinance and used by state agencies to support resource-management decisions. Available information can be associated with points or areas. Information associated with points includes descriptive logs, geophysical logs, raw and interpreted groundwater levels, aquifer and geologic unit identification, and hydraulic characteristics of wells. Information associated with areas is either in the form of raster-based (grid) data or polygons. Examples of raster-based data include water-table depths and elevations, tops and thicknesses of geologic and aquifer units, and aquifer transmissivity. Examples of polygons include surficial geology and groundwater recharge potential.

The intent of developing a web-technology enabled system is to provide a more intuitive and comprehensive toolset for locating, quickly viewing, and downloading the desired information in an efficient, extensible, and familiar manner.

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

The Bethany Beach borehole (Qj32-27) provides a nearly continuous record of the Oligocene to Pleistocene formations of eastern Sussex County, Delaware. This 1470-ft-deep, continuously cored hole penetrated Oligocene, Miocene, and Pleistocene stratigraphic units that contain important water-bearing intervals. The resulting detailed data on lithology, ages, and environments make this site an important reference section for the subsurface geology of the region.

Groundwater Resources of Sussex County (with an update for Kent County)

Project Contact(s):

This project is an integrated geologic/hydrologic study that will update our knowledge of the unconfined aquifers, confined aquifers, and groundwater resources of Sussex County. In addition, this project will utilize the results of recently completed study of the aquifer geology of Kent County (McLaughlin and Velez, 2005) to better define the groundwater resources of Kent County. The products to be produced by this study include aquifer depth and thickness maps and geologic cross sections for Sussex County. Products will also include a summary of basic hydrologic characteristics of aquifers in Kent and Sussex County and an analysis of water use for each aquifer.

DGS issues report on the geology of Bethany Beach

RI75 Stratigraphy And Correlation Of The Oligocene To Pleistocene Section At Bethany Beach, Delaware

The Delaware Geological Survey (DGS) at the University of Delaware released a report that provides new insights into the underground geology and hydrology of southeastern Sussex County, Delaware. The report, "Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware," summarizes the results of geological investigations conducted on a 1,470-foot-deep research borehole drilled at Bethany Beach, Del.